Расчет электрических полей при наличии диэлектриков. Поляризованность. Связанный заряд.
М.И. Векслер, Г.Г. Зегря
Уравнения Максвелла
(28) |
и уравнение Пуассона
(29) |
применимы при наличии любых диэлектриков. Следует только помнить, что ε может зависеть от координат, и его в общем случае нельзя выносить из-под знака div. Если при решении уравнения Пуассона потенциал φ найден на отдельных участках, то "сшивка" осуществляется согласно условиям
(30) |
Теорема Гаусса как математический закон не теряет свой силы при наличии диэлектриков, но для ее практического использования не только плотность заряда ρ, но и ε должны иметь высокосимметричное распределение. Например, в случае сферической симметрии ε, как и ρ, должен зависеть только от r.
Интегрирование закона Кулона в системах с диэлектриками является недопустимым, за исключением одной искусственной ситуации. Если ε = const во всем пространстве (кроме проводников), то в задачах для вакуума просто заменяем ε0 на произведение ε0ε. В частности, для точечного заряда .
Реакция диэлектрика на электрическое поле заключается в поляризации диэлектрика - ориентации дипольных моментов его молекул по полю. Количественно этот эффект тем сильнее, чем выше диэлектрическая проницаемость и чем сильнее поле. Поляризованные молекулы сами являются источниками поля, которое накладывается на внешее поле, что осложняет ситуацию даже при простой геометрии.
Подобные работы: