Некоторые замечательные кривые
В данной работе мы рассмотрим некоторые замечательные кривые и их особенности.
В параграфе 1 будет рассмотрена строфоида, особенности её формы, стереометрическое образование и исторические сведения.
Во 2-м параграфе мы изучим циссоиду Диокла и некоторые формулы, связанные с ней.
В параграфе 3 узнаем метод построения, особенности формы и исторические сведения о кривой, называемой «Декартов лист».
В 4-м параграфе рассмотрим улитку Паскаля. Её определение, построение, особенности формы, свойства нормали и построение касательной. плоский кривой лемниската бернули строфоида
В параграфе 5 будет изучена лемниската Бернулли: определение, построение, исторические сведения, особенности формы, свойства нормали и построение касательной.
А также при помощи задач узнаем формулы кривых в прямоугольной декартовой и полярной системах координат.
1. Строфоида
1.1 Определение.
Прямая строфоида, или просто строфоида, определяется так: берём взаимно-перпендикулярные прямые AB, CD (рис.1) и на одной из них точку A; через неё проводим произвольую прямую AL, пересекающую CD в точке P. На AL откладываем отрезки PM1,, PM2 равные PO (O – точка пересечения AB и CD). Строфоида (прямая) есть геометрическое место точек M1,M2.
Косая строфоида (рис.2) строится аналогично с той разницей, что AB и CD пересекаются косоугольно.
1.2 История вопроса
Строфоида была рассмотрена (вероятно, впервые) Ж. Робервалем в 1645 г. под именем птероиды. Нынешнее название введено Миди в 1849 г.
1.3 Стереометрическое образование
Представим себе цилиндрическую поверхность с осью CD (см. рис.1) и радиусом AO. Через точку A проведем перпендикулярную плоскости чертежа произвольную плоскость K (прямая AL – след этой плоскости). В сечении получим эллипс; его фокусы M1, M2 описывают прямую строфоиду.
Косая строфоида строится аналогично с той лишь разницей, что цилиндрическая поверхность заменяется конической: ось конуса (OS на рис.2) проходит через O перпендикулярно AB; прямая UV, проходящая через B параллельно CD, – одна из образующих. Точки M1, M2 – фокусы соответствующего конического сечения; косая строфоида расположена на обеих полостях конической поверхности и проходит через вершину S последней.
1.4 Особенности формы
Точка O – узловая; касательные к ветвям, проходящим через O, взаимно перпендикулярны (как для прямой, так и для косой строфоиды). Для косой строфоиды (рис.2) прямая UV служит асимптотой (при бесконечном удалении вниз). Кроме того, UV касается косой строфоиды в точке S, равноотстоящей от A и B.
У прямой строфоиды точка касания S «уходит в бесконечность» (при удалении вверх), так что прямая UV (см. рис.1) служит асимптотой для обеих ветвей.
1.5 Задача
Написать уравнение строфоиды в прямоугольной декартовой системе координат, осями которой являются прямые AB и CD, а направление оси OX определяется направлением оси строфоиды.
Решение:
Пусть O – начало координат; ось OX направлена по лучу OB; AO=a, AOD=α; когда строфоида – косая, система координат – косоугольная, ось OY направлена по лучу OD:
(1)
Для прямой строфоиды уравнение (1) приводится к виду
.
2. Циссоида Диокла
2.1 Определение и построение
На отрезке OA = 2a, как на диаметре, строим окружность C (рис.3) и проводим через A касательную UV. Через O проводим произвольную прямую OF, пересекающую UV в точке F; эта прямая пересечет (вторично) окружность C в точке E. На прямой OF от точки F по направлению к O откладываем отрезок FM, равный хорде OE.
Линия, описываемая точкой M при вращении OF около O, называется циссоидой Диокла – по имени греческого ученого 2 века до н.э., который ввел эту линию для графического решения задачи об удвоении куба.
Особенности формы. Циссоида симметрична относительно OA, проходит через точки B, D и имеет асимптоту UV (x = 2a); O – точка возврата (радиус кривизны RO = O).
Построение касательной. Чтобы построить касательную к циссоиде в ее точке M, проводим MPOM. Пусть Q, P – точки пересечения MP с прямыми OX, OY. От точки P на продолжении отрезка QP откладываем отрезок PK = PQ. Строим KNMO и ONQP. Точку N пересечения KN и ON соединяем с M. Прямая MN – нормаль к циссоиде. Искомая касательная MT перпендикулярна MN.
2.2 Исторические сведения
Диокл определял циссоиду с помощью другого построения. Он проводил диаметр BD, перпендикулярный OA; точка M получалась в пересечении хорды OE с прямой GG̕ BD, проведенной через точку G, симметричную с E относительно BD. Поэтому линия Диокла располагалась целиком внутри круга C. Она состояла из дуг OB и OD. Если замкнуть линию BOD полуокружностью BAD, описанной точкой E, получается фигура, напоминающая лист плюща. Отсюда название «циссоида».
Примерно в 1640 г. Роберваль, а позднее Р. де Слюз заметили, что циссоида неограниченно продолжается и за пределы окружности, если точка E описывает и другую полуокружность BOD; тогда M лежит на продолжении хорды OE. Однако наименование «циссоида Слюза», предложенное Гюйгенсом, не утвердилось в литературе.
2.3 Площадь S полосы
заключенной между циссоидой и ее асимптотой (эта полоса простирается в бесконечность), конечна; она втрое больше площади производящего круга C:
.
2.4 Объем V тела вращения
вышеупомянутой полосы около асимптоты UV равен объему V̕ тела вращения круга C около той же оси (Слюз):
.
При вращении той же полосы около оси симметрии получается тело бесконечного объема.
2.5 Задача
Дана циссоида Диокла с полюсом в точке O, осью OA и параметром 2a. Приняв точку O за полюс, а ось кривой за ось полярной системы, вывести уравнение кривой в полярных координатах. Записать уравнение кривой в прямоугольной декартовой системе координат.
Решение:
Пусть O – начало координат, OX – ось абсцисс. Тогда уравнение в прямоугольной системе координат:
.
Если O – полюс и OX – полярная ось, то уравнение в полярных координаты будет иметь вид:
.
3. Декартов лист
3.1 Исторические сведения
В 1638 г. Р. Декарт, чтобы опровергнуть (неверно им понятое) правило П. Ферма для нахождения касательных, предложил Ферма найти касательную к линии . При обычном для нас толковании отрицательных координат эта линия, которую в 18 веке стали называть декартовым листом, состоит из петли OBAC (рис.4) и двух бесконечных ветвей (OI, OL).
Но в таком виде ее представил впервые Х. Гюйгенс (в 1692 г.). До этого линию представляли в виде четырех лепестков (один из них OBAC), симметрично расположенных в четырех координатных углах. Поэтому ее называли «цветком жасмина».
3.2 Построение
Чтобы построить декартов лист с диаметром петли проведем окружность A радиуса и какую-либо прямую GH, параллельную AO. Далее проведем прямые AA̕ и OE, перпендикулярные AO, и отметим точки A̕, E их пересечения с GH. Наконец, отложим на луче OA отрезок OF = 3OA и проведем прямую FE. Теперь искомая линия строится по точкам следующим образом.
Через O проводим любую прямую ON и через точку N, где эта прямая пересекает (вторично) окружность, проводим NQAA̕. Точку Q, где NQ пересекает прямую OF соединяем с A̕ и отмечаем точку K, где QA̕ пересекает FE. Проводим прямую AK до пересечения с прямой GH в точке Q̕. Наконец, откладываем на прямой OA отрезок OP, равный и равнонаправленный с отрезком A̕Q̕. Прямая M1M2, проведенная через P параллельно AA̕, пересечет прямую ON в точке M1. Эта точка (а также точка M2, симметричная ей относительно AO), принадлежит искомой линии.
Когда точка N, исходя из O, описывает окружность A против часовой стрелки, точка M1 описывает траекторию LOCABOI.
3.3 Особенности формы
Точка O – узловая. Касательные, проходящие через O, совпадают с осями координат. Прямая OA () есть ось симметрии. Точка , наиболее удаленная от узловой точки, называется вершиной (коэффициент выражает диагональ квадрата, сторона которого равна наибольшей хорде OA петли, так что ). Прямая UV () – асимптота обеих бесконечных ветвей.
3.4 Задача
Написать уравнение декартова листа в прямоугольной системе координат и, приняв точку O за полюс, в полярной системе координат.
Решение:
Уравнение в прямоугольной системе:
.
Уравнение в полярной системе (OX – полярная ось):
.
4. Улитка Паскаля
4.1 Определение и построение
Даны: Точка O (полюс), окружность K диаметра OB=a (рис.6), проходящая через полюс (основная окружность; она показана на чертеже пунктиром), и отрезок . Из полюса O проводим произвольную прямую OP. От точки P, где прямая OP вторично пересекает окружность, откладываем в обе стороны от P отрезки . Геометрическое место точек M1, M2 (жирная линия на рис.6) называется улиткой Паскаля – в честь Этьена Паскаля (1588 – 1651), отца знаменитого французского ученого Блеза Паскаля (1623 – 1662).
4.2 Исторические сведения
Термин «улитка Паскаля» предложен Ж. Робервалем, современником и другом Паскаля. Роберваль рассматривал эту линию как один из видов обобщенной конхоиды.
4.3 Особенности формы
Улитка Паскаля симметрична относительно прямой OB. Эта прямая (ось улитки) пересекает улитку: 1) в точке O (если последняя принадлежит улитке); 2) в двух точках A, C (вершины). Форма линии зависит от соотношения между отрезками и .
1) Когда (линия 1 жирная; для неё ) улитка Паскаля пересекает сама себя в узловой точке O
,
Образуя две петли: внешнюю OHA1GO и внутреннюю OH'C1G'O. Угловой коэффициент касательных OD, OE в узловой точке:
.
Для построения касательных достаточно провести хорд OD, OE длины l в окружности K. Наиболее удаленным от оси точкам G, H внешней петли отвечает значение
;
Наиболее удаленным точкам G', H' внутренней петли – значение
.
Соответствующее полярное значение полярного радиуса:
.
2) Когда (линия 2 на рис.6), внутренняя петля стягивается к полюсу и превращается в точку возврата, где движение по направлению луча OX сменяется движением в противоположном направлении. Наиболее удаленным от оси точкам L, M отвечают значения
.
Линия 2 называется кардиоидой, т.е. «сердцеобразной» (термин введен Кастиллоном в 1741г.). Она изображена отдельно на рис.7
3) Когда (линия 3; для неё ), улитка Паскаля – замкнутая линия без самопересечения; оторвавшись от полюса, она заключает его внутри себя. Наиболее удаленным от оси точкам L', N' отвечает значение . Лишившись точки возврата, улитка приобретает взамен точки перегиба R, Q, которым отвечает значение . Угол ROQ , под которым отрезок RQ виден из полюса, по мере возрастания сначала возрастает от нуля до ; этому значению соответствует . При дальнейшем увеличении угол ROQ убывает, стремясь к нулю при .
4) При точки перегиба, сливаясь с вершиной C пропадают (причем кривизна в точке C становится равной нулю). Улитка приобретает овальную форму и сохраняет ее при всех значениях
(линия 4; для нее ). Наиболее удаленным от оси точкам L'', N'' отвечает значение
.
4.4 Свойства нормали
Нормаль улитки Паскаля в ее точке M (рис.7) проходит через точку N основной окружности K, диаметрально противоположную той точке P, где OM пересекается с основной окружностью.
4.5 Построение касательной
Чтобы провести касательную к улитке Паскаля в ее точке M, соежиняем последнюю с полюсом O. Точку N основной окрудности K, диаметрально противополжную точке P, соединяем с M. Прямая MN будет нормалью к улитке. Проводя MT MN, получим искомую касательную.
4.6 Задача
Дана улитка Паскаля с полюсом в точке O. Написать уравнения в прямоугольной и полярной системах координат.
Решение:
Пусть начало координат – в полюсе O, ось OX направлена по лучу OB. Тогда уравнение в прямоугольной системе координат будет иметь вид:
. (1)
Строго говоря, это уравнение представляет фигуру, состоящую из улитки Паскаля и полюса O, который может и не принадлежать определенному выше геометрическому месту (такой случай имеет место для линий 3 и 4 на рис.6).
Уравнение в полярной системе (O – полюс, OX – полярная ось):
, (2)
где меняется от какого-либо значения до .
5. Лемниската Бернулли
5.1 Определение
Лемниската есть геометрическое место точке, для которых произведение расстояний от них до концов данно отрещка равно . Точки F1, F2 называются фокусами лемнискаты; прямая F1F2 – ее осью.
5.2 Исторические сведения
В 1694 г. Якоб Бернули в работе, посвященной теории приливов и отливов, использовал в качестве вспомогательного средства линию, которую он задает уравнением . Он отмечает сходство этой линии (рис.8) с цифрой 8 и узлообразной повязкой, которую он именует «лемниском». Отсюда называние лемниската. Лемниската получила широкую ивестность в 1718 г., когда итальянский математик Джулио Карло Фаньяно (1682 – 1766) установил, что интеграл, представляющий длину дуги лемнискаты, не выражается через элементарные функции, и тем не менее лемнискату можно разделить (с помощью линейки и циркуля) на n равных дуг при условии, что или или , где m – любое целое положительное число.
Лемниската есть частный вид линии Кассини. Однако, хотя линии Кассини получили всеобщую известность с 1749 г., тождественность «восьмерки Кассини» с лемнискатой Бернули была уставновлена лишь в 1806 г. (итальянским математиком Саладини).
5.3 Построение
Можно применять общий способ построя линия Кассини, но нижеизложенный способ (К. Маклорена) и проще и лучше. Строим (см. рис.) окружность радиуса с центром в точке F1 (или F2). Проводим произвольную секущую OPQ и откладываем на этой прямой в обе стороны от точки O отрезки OM и OM1, равные хорде PQ. Точка M опишет одну из петель лемнискаты, точка M1 – другую.
5.4 Особенности формы
Лемниската имеет две оси симметрии: прямую F1F2 (OX) и прямую OYOX. Точка O – узловая; обе ветви имеют здесь перегиб. Касательные в этой точке составляют с осью OX углы . Точки A1,A2 лемнискаты, наиболее удаленные от узла O (вершины лемнискаты), лежат на оси F1F2 на расстоянии от узла.
5.5 Свойства нормали.
Подяоный радиус OM лемнискаты образует с нормалью MN угол , вдвое больше полярного угла :
.
Другими словами: угол между осью OX и вектором NN' внешней нормали лемнискаты в точке M равен утроенному полярному углу точки M:
.
5.6 Построение касательной
Чтобы построить касательную к лемнискате в ее точке M, проводим полярный радиус OM и строим . Перпендикуляр MT к прямой MN есть искомая касательная.
5.7 Задача
Написать уравнение лемнискаты Бернулли в прямоугольной системе координат (O – серидина отрезка F1F2) и в полярной системе координат (O – полюс).
Решение:
Пусть точка O – начало координат ; ось OX направлена по F1F2. Тогда Уравнение в прямоугольной системе координат:
.
Если O – полюс, OX – полярная ось, то уравнение в полярной системе:
.
Угол изменяется в промежутках и .
Заключение
В данной работе мы рассмотрели некоторые замечательные кривые, изучили их способы построения, особенности формы и задачи, связанные с этими кривыми.
В параграфе 1 была рассмотрена строфоида, особенности её формы, стереометрическое образование и исторические сведения.
Во 2-м параграфе мы изучили циссоиду Диокла и некоторые формулы, связанные с ней.
В параграфе 3 узнали метод построения, особенности формы и исторические сведения о кривой, называемой «Декартов лист».
В 4-м параграфе рассмотрели улитку Паскаля. Её определение, построение, особенности формы, свойства нормали и построение касательной.
В параграфе 5 была изучена лемниската Бернулли: определение, построение, исторические сведения, особенности формы, свойства нормали и построение касательной.
А также при помощи задач узнали формулы кривых в прямоугольной декартовой и полярной системах координат.
Используемая литература:
1. Маркушевич А.И., Замечательные кривые, М., 1978 г., 48 стр. с ил.
2. Выгодский М.Я., Справочник по высшей математике, М.: АСТ: Астрель, 2008, 991 стр. с ил.
3. Атанасян Л.С. и Атанасян В.А., Сборник задач по геометрии. Учеб. пособие для студентов физ.-мат. фак. пед. ин-тов. Ч. I, М., "Просвещение", 1973, 256 с.
4. Гурова А.Э. Замечательные кривые вокруг нас. М, 1989
5. Маркушевич А.И. Замечательные кривые. - М, 1978
6. http://ru.wikipedia.org/wiki/Строфоида
7. http://ru.wikipedia.org/wiki/Лемниската_Бернулли
8. http://ru.wikipedia.org/wiki/Улитка_Паскаля