Экономическая кибернетика

Кибернетика исследует весьма специфический предмет – системы и процессы управления. Она характеризуется новыми подходами к анализу и синтезу сложных динамических объектов. Кибернетике присущ системный подход, позволяющий рассматривать явление во всей его сложности, с учетом всех имеющихся связей и свойств. Это позволяет выявить, познать и рационально использовать закономерности управления в природе, обществе и искусственно создаваемых системах. Вместе с тем, развитие кибернетики потребовало переосмысления некоторых старых понятий, сложившихся в общественной практике, и формализации представлений терминологического характера, являющихся исходной базой при изучении сложных систем управления различной природы. В настоящем разделе будут даны содержательные характеристики основных понятий кибернетики: система (1), модель (2), управление (3), информация (4).

ГЛАВА 1. СИСТЕМА

Заметим прежде всего, что определение любой конкретной системы является произвольным. Вполне обоснованно ножницы можно назвать системой. Однако более сложная совокупность элементов, включающая, например, работницу, режущую что-нибудь ножницами, также является подлинной системой. В свою очередь, работница с ножницами представляет часть более крупной системы производства какого-либо изделия и т.д.

По существу, вся вселенная состоит из множества систем, каждая из которых содержится в более крупной системе подобно множеству пустотелых кубиков, вложенных друг в друга. Так же, как всегда, можно представить себе более обширную систему, в которую входит данная, всегда можно выделить из данной системы более ограниченную. Пару ножниц, о которой мы только что упоминали, можно считать минимальной системой. Однако посмотрим, что получится, если сломать винт, соединяющий лезвия, и рассматривать одно лезвие. Исходя из старой точки зрения, это уже не система. а один безжизненный ее обломок. Действительно, одно лезвие уже не представляет систему для резания. Но, положив лезвие под микроскоп, мы увидим, что оно является сложной системой компонент, взаимодействующих друг с другом особым образом, определяемым. например, температурой, которую имеет лезвие. Элементами этой системы являются различные разновидности зерен стали. Однако, если мы возьмем одно из них, то можно обнаружить, что оно, в свою очередь, содержит некоторую систему, в данном случае атомную систему, обладающую определенными свойствами. Основной вывод из всех этих рассуждений сводится к тому, что при стремлении исследовать все воздействия, влияющие на какой-либо единичный материальный объект, мы должны определить его как часть некоторой системы. Эта система является системой в силу того, что она состоит из взаимосвязанных частей и в определенном смысле представляет замкнутое целое. Однако объект, который мы рассматриваем, безусловно, является частью ряда таких систем, каждая из которых, в свою очередь, представляет подсистему, входящую в ряд более крупных систем. Таким образом, задача строгого определения системы, которую мы хотим исследовать, отнюдь не проста.

Ст. Бир

По поводу определения понятия "система" существует много различных высказываний. Первоначально "систему" определяли как комплекс элементов, находящихся во взаимодействии (австрийский биолог-теоретик Людвиг фон Берталанфи, основоположник общей теории систем, 1950 г.), или как множество объектов вместе с отношениями между объектами и их атрибутами (А. Холл и Р.-Ф. Фейджин). Во всех определениях такого рода подчеркивалось, что система представляет собой целостный комплекс взаимосвязанных элементов и что она имеет определенную структуру и взаимодействует с внешней средой.

Современное определение термина "система" связано с развитием общей теории систем и принятым уровнем абстрагирования при построении математической модели реальной системы. А поскольку математических моделей, применимых для описания реального объекта, может быть сколь угодно много, и все они определяются принятым уровнем абстрагирования, то нет и единой формулировки понятия "система", т.к. определение этого термина в зависимости от принятого исследователем уровня абстрагирования является различным.

Уровни абстрактного описания систем

Наиболее применимыми в практике системного анализа являются следующие уровни абстрактного описания систем:

- символический, или лингвистический;

- теоретико-множественный;

- абстрактно-алгебраический;

- топологический;

- логико-математический;

- теоретико-информационный;

- динамический;

- эвристический.

Лингвистический уровень описания системы – наиболее общий уровень абстрагирования. На лингвистическом уровне описания, по М. Месаровичу, системой называется множество правильных высказываний в некотором абстрактном языке, для которого определены грамматические правила построения высказываний. Все высказывания делятся на два класса: термы (объекты исследования) и функторы (отношения между термами). Для определения абстрактного языка вводится совокупность некоторых символов и задаются правила оперирования ими.

Теоретико-множественное определение системы: система есть собственное подмножество , где Х – прямое (декартово) произведение множеств Xi, :

               (1.1)

Декартовым произведением множеств называется множество конечных наборов элементов (x1, x1, …, xn), таких, что

Каждый элемент , в свою очередь, может быть множеством, что позволяет описывать иерархию достаточно сложных систем.

Примером реальной системы, исследованной на уровне теоретико-множественного подхода, является кибернетическая система управления предприятием, описанная Ст. Биром.

Абстрактно-алгебраическое определение понятия системы: системой S называется некоторое множество элементов , , на котором задано отношение R с фиксированными свойствами Р. Следовательно, система определяется заданием  и семейством отношений , например, бинарных, тернарных и т.д.

Важное значение в исследовании реальных систем имеет динамическое определение сложной системы. С позиций динамического подхода определение системы сводится к заданию восьмерки величин:

,               (1.2)

где Т – множество моментов времени;

X – множество допустимых входных воздействий, ;

 – множество мгновенных значений входных воздействий;

U – множество состояний, или внутренних характеристик системы;

Y – множество мгновенных значений выходных сигналов;

Г – множество выходных величин, ;

 – выходное отображение, ;

 – переходная функция состояния, .

Приведенное определение динамической системы является чрезвычайно общим. Такое определение имеет концептуальное значение, позволяет выработать общую терминологию, но не обеспечивает получения содержательных практических выводов, и поэтому требует дальнейшей конкретизации и введения дополнительных структур, что будет осуществлено ниже. Задачи, рассматриваемые в теории систем на основе приведенного определения, традиционны: это задачи устойчивости, управления, идентификации, оптимизации, эквивалентности, структуры, декомпозиции, синтеза и ряд других.

Для целей экономической кибернетики понятие динамической системы представляется особенно важным, поскольку экономические объекты относятся к классу динамических.

До сих пор предпосылкой описания сложной системы являлось представление о том, что взаимодействие системы с внешней средой осуществляется с помощью входов и выходов. Системы такого рода являются относительно обособленными. В реальной действительности абсолютно обособленных (замкнутых) систем не существует, хотя подобная абстракция иногда используется в целях исследования.

Системный подход

Локальным решениям, полученным на основе охвата небольшого числа существенных факторов, кибернетика противопоставляет системный подход. Этот подход отличается от традиционного, предусматривающего расчленение изучаемого объекта на составные элементы и определение поведения сложного объекта как результата объединения свойств входящих в него систем.

Системный подход основывается на принципе целостности объекта исследования, т.е. исследование его свойств как единого целого, единой системы. Этот принцип исходит из того, что целое обладает такими качествами, которые не обладает ни одна из его частей. Такое свойство целостной системы называют эмерджентностью (от англ. emergent – неожиданно возникающий). Выражением эмерджентных свойств является всякий эффект взаимодействия, не аддитивный по отношению к локальным эффектам.

Системный подход для максимального использования качества целостности требует непрерывной интеграции представлений о системе с различных точек зрения, на каждом этапе ее исследования, а также – подчинения частных целей общей цели, стоящей перед всей системой.

Системный подход опирается на диалектический закон взаимосвязи и взаимообусловленности явлений в мире и обществе и требует рассмотрения изучаемого явления или процесса не только как самостоятельной системы, но и как подсистемы некоторой суперсистемы более высокого уровня. Системный подход требует прослеживания как можно большего числа связей, не только внутренних, но и внешних – с тем, чтобы не упустить действительно существенные связи и факторы и оценить их эффекты. Практически системный подход – это системный охват, системные представления, системная организация исследования.

Любой объект исследования, таким образом, может быть представлен как подсистема некоторой системы более высокого ранга, – и это приводит к проблеме выделения системы, установления ее границ, – и как система по отношению к некоторой совокупности подсистем более низкого ранга, которые, в свою очередь, образованы некоторыми элементами, дальнейшее дробление которых нецелесообразно с точки зрения конкретного исследования, – и это определяет необходимость постановки задачи выбора такого первичного элемента.

Выделение системы предполагает наличие ряда системообразующих признаков, которые определяются целями исследования и волей исследователя, и в силу этого являются субъективными:

- объекта исследования;

- субъекта исследования;

- цели исследования.

Не существует однозначного подхода к определению первичного элемента, выбор которого осуществляется субъективно, в соответствии с целями исследования.

Первичным элементом системы является элементарный объект, неделимый далее средствами данного метода декомпозиции в границах данного исследования; устойчивость которого выше, чем устойчивость системы в целом.

Концепция первичного элемента системы позволяет производить структурный анализ системы, причем элементы выступают модулями структуры, "черными ящиками", внутренняя структура которых не является предметом исследования. Взаимодействия элементов системы между собой и с внешней средой обеспечивается посредством системы связей, разнообразие которых так же велико, как и разнообразие свойств системы и среды. При этом в процессе анализа и синтеза систем исследуются лишь существенные связи, а прочими пренебрегают, либо интерпретируют их как возмущения, или "шум".

Сложная система

При выделении системы, как правило, задается не одно, а множество отношений, или связей между элементами. Такая система характеризуется неоднородностью элементов и связей, структурным разнообразием, что свидетельствует о сложности системы.

Понятие сложной системы неоднозначно. Это собирательное название систем, состоящих из большого числа взаимосвязанных элементов. Часто сложными называют системы, которые не поддаются корректному математическому описанию либо ввиду высокого уровня разнообразия, либо из-за непознанности природы явлений, протекающих в системе.

Английский кибернетик Ст. Вир подразделяет все кибернетические системы на три группы – простые, сложные и очень сложные. Примеры систем, относящиеся к этим трем группам, приведены в табл. 1.1.

Таблица 1.1. Классификация систем по Ст. Биру

СистемыПростыеСложныеОчень сложные
ДетерминированныеОконная задвижкаЦифровая электронная вычислительная машина
Проект механических мастерскихАвтоматизация
ВероятностныеПодбрасывание монетыХранение запасовЭкономика
Движение медузыУсловные рефлексыМозг
Статистический контроль качества продукцииПрибыль промышленного предприятияФирма
Актуально: