Теорема об отрезках параллельных прямых, заключенных между двумя параллельными плоскостями

Билет №5.

Теорема об отрезках параллельных прямых, заключенных между двумя параллельными плоскостями.

Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны. Действительно, согласно определению параллельные прямые - это прямые, которые лежат в одной плоскости и не пересекаются. Наши прямые лежат в одной плоскости - секущей плоскости. Они не пересекаются, так как не пересекаются содержащие их параллельные плоскости. Значит, прямые параллельны. ЧТД.

Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны. Действительно, пусть a и b - параллельные плоскости, а и в - пересекающие их параллельные прямые, А1, А2,и В1, В2 - точки пересечения прямых с плоскостями (см рисунок). Проведем через прямые а и в плоскость. Она пересекает плоскости a и b по параллельным прямым А1В1 и А2В2. Четырехугольник А1В1В2А2 - параллелограмм, т.к. у него противолежащие стороны параллельны. А у параллелограмма противолежащие стороны равны. Значит А1А2=В1В2. ЧТД.

Касательная плоскость - плоскость, проходящая через точку А шаровой поверхности и перпендикулярная радиусу, проведенному в точку А.

Теорема 20.5: касательная плоскость имеет с шаром только одну общую точку - точку касания.

Доказательство: пусть a - плоскость, касательная к шару, и А - точка касания. Возьмем произвольную точку Х плоскости a, отличную от А. Так как ОА - перпендикуляр, а ОХ - наклонная, то ОХ>ОА=R. Следовательно точка Х не принадлежит шару. Теорема доказана.

Прямая в касательной плоскости шара, проходящая через точку касания, называется касательной к шару в этой точке. Так как касательная плоскость имеет с шаром только одну общую точку, то касательная прямая тоже имеет с шаром только одну общую точку - точку касания.



Подобные работы:

Актуально: