Лазерная технология
ПЛАН
1. История открытия
2. Принцип работы лазера
2.1 Сущность явления усиления света
2.2 Активные вещества
2.3 Резонаторы
2.4 Устройства накачки
3. Применение лазеров
3.1 Термоядерный синтез
3.2 Лазеры в технологии
3.3 Лазеры в авиации
3.4 Лазеры в исследовании атмосферы и океана
3.5 Лазеры в медицине
3.6 Лазерная локация и связь
Заключение
Литература
1. ИСТОРИЯ ОТКРЫТИЯ
Лазеры – это источники когерентного оптического излучения, принцип действия которых основан на использовании явления индуцированного излучения. Слово «лазер» представляет собой аббревиатуру английской фразы «Light Amplification by Stimulated Emission of Radiation», переводимой как усиление света в результате вынужденного излучения. Гипотеза о существовании вынужденного (индуцированного) излучения была высказана в 1917 г. А. Эйнштейном. В 1940 г. профессор Московского энергетического института В. А. Фабрикант сформулировал условия, при выполнении которых можно обнаружить индуцированное излучение, а в 1951 г. он совместно с М. М. Вудынским и Ф. А. Бутаевой получил авторское свидетельство на способ усиления электромагнитного излучения. Устройство, генерирующее электромагнитные колебания на основе использования явления индуцированного излучения в СВЧ диапазоне, было создано в 1953—1954 гг. Н. Г. Басовым и А. М. Прохоровым в СССР и группой Ч. Таунса в США.
В 1958 г. А. М. Прохоров в СССР, а в США Ч. Таунс и А. Шавлов показали возможность использования индуцированного излучения для создания генераторов когерентного оптического излучения — лазеров. В 1959 г. Н. Г. Басову и А. М. Прохорову за разработку нового принципа генерирования и усиления электромагнитных колебаний и создание на основе этого принципа СВЧ генераторов и усилителей была присуждена Ленинская премия, а в 1964 г. совместно с Ч. Таунсом — Нобелевская премия по физике за исследования в области квантовой электроники.
2. ПРИНЦИП РАБОТЫ ЛАЗЕРА
2.1 Сущность явления усиления света
Для понимания сущности этого явления необходимо более подробно изучить элементарные акты взаимодействия электромагнитного излучения с атомной системой. Рассмотрим для простоты двухуровневую систему, т. е. атомы, обладающие двумя энергетическими уровнями Е1 и Е2 (Е2>Е1). Пусть N1— число атомов в единице объема вещества, находящихся на нижнем энергетическом уровне Е1, а N2 —- на верхнем уровне Е2. Тогда в результате взаимодействия электромагнитной волны с атомами вещества будут происходить изменения ее интенсивности, обусловленные следующими элементарными процессами.
Вынужденнное поглощение фотонов частоты V12=(E2-E1)/h=V0, которое будет происходить со скоростью
dN1/dt=B12(v)N1,
где B12 – коэффициент Энштейна, такой, что B12(v) – вероятность этого вынужденного перехода, а (v) – спектральная плотность энергии волны.
Спонтанное излучение атомов, при котором они самопроизвольно переходят с верхнего возбужденного состояния Е2 на уровень Е1. число этих переходов в единицу времени будет равно
dN2сп/dt=A21N2,
гдеA21 — коэффициент Эйнштейна. Так как эти переходы происходят в результате внутренних причин и статистически независимы, то спонтанное излучение носит тепловой характер и по отношению к внешнему электромагнитному полю будет некогерентным.
Вынужденное, или индуцированное, излучение фотонов частоты v21=v0, при котором атомы переходят из возбужденного верхнего состояния Е2 на нижнее Е1 под действием внешнего светового поля. Скорость этого процесса будет
dN2вын/dt=B21(v)N2.
Главной особенностью этих переходов является то, что излучаемый под действием внешнего поля квант полностью когерентен с этим полем, т. е. имеет ту же частоту, фазу, поляризацию и распространяется по тому же направлению. Таким образом, вынужденное излучение является когерентным по отношению к внешнему полю. Вероятностные коэффициенты Эйнштейна, B21 и B12 связаны между следующим образом:
B12=B21, A21=(8пhv3/c3)*B12.
В обычных условиях сред, близких к равновесию, имеет место ослабление рассматриваемой волны по закону Бугера: I=I0e-kx, N1>N2, k<0, т.е. происходит вынужденное (положительное)поглощение. Если в среде создать условие N2>N1, то в этом случаеk>0 и среда будет усиливать проходящую волну, т.е. будет наблюдаться отрицательное поглощение. Среды, у которых выполняется это условие, называются средами с инверсией заселенности или активными средами.
Когда в условиях инверсии заселенности уровней электрон переходит на нижний уровень, испуская фотон, то последний, проходит через множество окружающих его возбужденных атомов и способен вызвать излучение фотона у какого- либо из них. Оба фотона перемещаются в одном и том же направлении и к тому же они практически когерентны. Каждый из этой пары фотонов может повторить тот же процесс, и через очень непродолжительное время благодаря своего рода цепной реакции образуется фотонная лавина, в которой все фотоны имеют одну и туже частоту, все движутся в одном направлении и все оптически когерентны. Эта лавина фотонов может быть значительно усилена с помощью одного оптического трюка. Если всю систему поместить в резонатор (между двумя не полностью отражающими зеркалами), то в высокой степени когерентный и направленный свет будет многократно проходить внутри области инверсией заселенности. Поскольку скорость света очень велика, весь процесс многократного отражения света с постоянно нарастающей интенсивностью происходит за весьма малый промежуток времени, и при соблюдении необходимых условий возникает очень интенсивный и очень кратковременный световой импульс, обладающий совершено особыми свойствами. Лазерные лучи строго монохроматичны и когерентны, имеют очень малую угловую расходимость, имеют огромную мощность излучения.
Таким образом, для получения лазерного излучения необходимо иметь частицы, в которых может быть создана инверсная заселенность, резонатор и устройство, обеспечивающее получение инверсного состояния. Частицы, в которых может быть создана инверсная заселенность, называют активными веществами лазера. Совокупность же элементов, обеспечивающих получение инверсной заселенности, называют устройством или системой накачки.
2.2 Активные вещества
В настоящее время в качестве активных веществ лазеров используются твердые тела, полупроводники, жидкости, газы. В соответствии с этим различают твердотельные лазеры, т. е. лазеры, у которых в качестве активного вещества используются диэлектрические кристаллы или стекла с примесью активных частиц; жидкостные лазеры, у которых активное вещество находится в жидком состоянии; полупроводниковые лазеры и газовые лазеры, активными частицами которых могут быть атомы, ионы или молекулы собственно газов или пары металлов.
Активное вещество твердотельных лазеров состоит из двух основных компонентов: матрицы и активатора. Энергетические уровни атомов в кристалле отличаются от уровней свободных атомов, так как на атом в кристалле воздействуют электрические и магнитные поля окружающих атомов. Это приводит к расщеплению уровней, появлению подуровней и, в конечном счете, энергетических полос. Наибольшее расширение испытывают уровни внешних электронов, так как внутренние электроны экранируются от воздействия полей соседних атомов внешними электронными оболочками. В качестве матрицы используются диэлектрические кристаллы, запрещенная зона которых обычно составляет несколько электрон-вольт. Поэтому чистая кристаллическая основа является совершенно бесцветной и прозрачной средой. Введение в кристаллическую основу ионов активатора приводит к появлению в активированном кристалле областей селективного поглощения и спонтанной люминесценции (центров окраски). Ионы активатора замещают ионы основы, поэтому радиус иона активатора должен практически совпадать с радиусом иона матрицы. Чем точнее это геометрическое соответствие, тем более высокие концентрации ионов активатора в основе могут быть достигнуты без заметных оптических дефектов. Атом активатора в кристаллической основе должен иметь метастабильный уровень с большим временем жизни и узкой линией люминесценции (шириной не более нескольких см-1). Чем больше время жизни верхнего уровня лазерного перехода и чем меньше ширина его линии, тем меньше мощность накачки, при которой достигается инверсная населенность. Ширина линий люминесценции и их число должны быть минимальными также и для увеличения квантового выхода люминесценции, т. е. отношения числа фотонов, поглощенных активным веществом на частоте накачки, к числу фотонов, излучаемых данным активным веществом на частоте лазерного перехода. Квантовый выход характеризует, в конечном счете, эффективность преобразования поглощенного некогерентного из лучения в когерентное. Перечисленным выше требованиям отвечают актиноидные (U —уран), редкоземельные (Nd, Pr, Sm, Eu, Tb, Dy, Но, Er, Tu, Yb) и некоторые переходные (Сг, Со, Ni) металлы. Малая ширина спектральных линий у этих атомов объясняется тем, что лазерные переходы у них соответствуют переходам электронов в глубоко лежащих слоях, хорошо экранированных от воздействия внешнего поля кристаллической решетки.
Свойства активного вещества определяются не только активатором, но и матрицей. Матрица должна быть прозрачной, т. е. не иметь ни собственного, ни примесного поглощения на частоте генерации, иметь высокую оптическую и механическую однородность, теплопроводность, твердость, термическую и химическую стойкость. В качестве матриц активных веществ широко используются:
— простые оксидные кристаллы с упорядоченной структурой (рубин А12О3: Сг3+; иттрий-алюминиевый гранат, активированный неодимом, Y3Al5O12: Nd3+; вольфрамат кальция, активированный неодимом, и др.);
— смешанные фторидные кристаллы с разупорядоченной структурой (CaF2 — SrF2:Nd13+; BaF2 — GdF3: Nd3+ и др.);
— оксидные лазерные кристаллы с разупорядоченной структурой (Lr02 — Y203: Nd3+; Na5N (WO4): Nd3+ и др.);
— лазерные стекла.
В лазерные стекла ионы активатора входят не как ионы, изоморфно замещающие катионы решетки, а как компоненты стекла. Стекла имеют несомненные преимущества перед кристаллическими основами. Они изготовляются из дешевого сырья, просты в производстве и могут производиться массово с заданными и воспроизводимыми свойствами. Из стекол просто изготовить изделия любых размеров и формы при сохранении высокой однородности состава и изотропности свойств. Одним из самых важных их преимуществ является возможность введения активатора в практически любых концентрациях. Так, концентрация неодима в стекле достигает 3—4%, в то время как концентрация хрома в рубине не должна превышать сотых долей процента.
Рабочие схемы активных веществ твердотельных лазеров подразделяются на трех- и четырехуровневые. По какой из схем работает данный активный элемент, судят по разности энергий между основным и нижним рабочими уровнями. Чем больше эта разность, тем при более высоких температурах возможна эффективная генерация. Так, например, у иона Сг3+ основное состояние характеризуется двумя подуровнями, расстояние между которыми составляет 0,38 см-1. При такой разности энергий даже при температуре жидкого гелия (~4К) заселенность верхнего подуровня только на ~13°/0 меньше нижнего, т. е. они заселены одинаково и, следовательно, рубин — активное вещество с трехуровневой схемой при любой температуре. У иона неодима же нижний лазерный уровень для излучения при =1,06 мкм расположен на 2000 см-1 выше основного. Даже при комнатной температуре на нижнем уровне ионов неодима в 1,4 -104 раз меньше, чем на основном, и активные элементы, у которых в качестве активатора используется неодим, работают по четырехуровневой схеме.
Полупроводниковые активные вещества отличаются тем, что в них используются оптические переходы между состояниями в электронных энергетических зонах, т. е. в оптических переходах участвуют свободные носители тока (электроны и дырки). Кроме того, в полупроводниках излучательные переходы могут возникать также за счет примесных центров и экситонов. (Экситоном называется элементарное электрически нейтральное возбуждение, имеющее характер квазичастицы в полупроводниках и диэлектриках). Если энергия возбуждения меньше ширины запрещенной зоны, то при переходе электрона из валентной зоны в зону проводимости может образоваться пара электрон — дырка. Электрон и дырка, образующие такую пару, не могут перемещаться независимо, а находятся в связанном состоянии электрически нейтральной квазичастицы — экситона. Экситоны имеют зонный энергетический спектр, целый спин. Им приписывают квантовые числа.
Наиболее простыми и наглядными являются переходы «зона — зона», когда переход из зоны проводимости в валентную зону происходит с излучением фотона, а обратный — с поглощением.
Под воздействием накачки электрон переходит из валентной зоны в зону проводимости, и образуется пара электрон — дырка. Как и любая система, электрон и дырка стремятся занять положение, соответствующее минимальной энергии, поэтому электрон стремится занять разрешенное положение возле дна зоны проводимости, а дырка — возле потолка валентной зоны. Практически у всех полупроводников состояния у дна зоны проводимости являются метастабильными, и в этом отношении они могут считаться четырехуровневыми системами.
Для полупроводников, легированных водородоподобными атомами (например, атомом цинка в арсениде галлия), характерны переходы «зона — примесь». Атомы примеси быстро захватывают избыточные носители из близкой к ним зоны, так что скорость рекомбинации через примесь сравнима со скоростью межзонной рекомбинации, и переход осуществляется между уровнем примеси и зоной собственно полупроводника. В случае сильного легирования уровни уширяются, энергия ионизации уменьшается и в пределе уровни полностью сливаются с собственной зоной. Ширина запрещенной зоны при этом уменьшается, а длина волны генерируемого излучения увеличивается.
Излучательные переходы возможны и в донорноакцепторных парах, т. е. возможны переходы между водородоподобными примесями у обоих краев запрещенной зоны. Такие переходы происходят с большим квантовым выходом, но они достаточно ярко выражены только в слаболегированных полупроводниках.
К полупроводниковым лазерам относят обычно и лазеры на твердых растворах родственных соединений, часто называемых лазерами на основе гетеропереходов. Эти растворы интересны, прежде всего, тем, что при смешивании соединений с одинаковым типом решетки можно получить непрерывный ряд твердых растворов с практически непрерывным изменением ширины запрещенной зоны, а, следовательно, и длины волны лазерного излучения.
В жидкостных лазерах в качестве активного вещества используют:
— растворы дикстонатов редкоземельных элементов (европия, тербия или неодима) в органических красителях;
— растворы неорганических соединений редкоземельных элементов;
— красители — сложные органические соединения, обладающие интенсивными полосами поглощения в видимой и ультрафиолетовой областях спектра. В жидкостных лазерах с редкоземельными элементами лазерное излучение возникает на переходах с метастабильных уровней ионов этих элементов. Возбуждение активного иона в металлоорганичеокой жидкости происходит в результате внутримолекулярной передачи энергии от органической части комплекса к иону.
В неорганические растворители в настоящее время вводят только один активный элемент — неодим. Генерация идет по четырехуровневой схеме. Излучение накачки поглощается собственными полосами поглощения иона неодима. В качестве растворителя часто используют двухкомпонентные смеси оксихлоридов селена (SеОС12) и фосфора (РОС13) с галогенидами элементов III, IV и V групп.
Наиболее эффективными лазерными материалами на органических красителях являются кумарины, фталимиды, производные окзасола и диозола, ксантеновые, полиметиновые и оксазиновые красители. Активным веществом в них выступает краситель, а матрицей — растворитель. Спектр генерации органических красителей без селекции типов колебаний обычно составляет 5—20 нм. Введением селективных элементов можно сузить спектр лазерного излучения до 0,05—1 нм без существенного уменьшения выходной мощности и осуществлять перестройку длины волны излучения в одном и том же растворе в пределах десятков нанометров. Перестройка в более широком диапазоне возможна путем изменения концентрации и состава раствора красителя.
В жидких лазерных средах может быть достигнута большая концентрация активных частиц, что позволяет получать, так же как и в лазерах на твердом теле, большие энергии и мощности излучения с единицы объема активного вещества. В жидкостях отсутствуют постоянные напряжения, структурные неоднородности и включения, вследствие чего их оптические характеристики по объему изотропны и постоянны, а это способствует получению излучения с высокой степенью пространственной когерентности и направленности. В жидкостных лазерах не возникают необратимые разрушения активного вещества при больших плотностях энергии.
К недостаткам жидких лазерных материалов следует отнести высокие значения температурных изменений коэффициента преломления, что приводит к появлению значительных оптических неоднородностей и к ухудшению генерационных характеристик. При больших плотностях лазерного излучения необходимо считаться также с нелинейными эффектами.
Газовые активные среды лазеров существенно отличаются от описанных выше тем, что позволяют генерировать излучение в широком диапазоне длин волн (от ваккумной ультрафиолетовой области до инфракрасного, практически субмиллиметрового, диапазона) в импульсном и непрерывном режимах. Газообразность активной среды обусловливает ряд специфических особенностей газовых лазеров. Им свойственна высокая монохроматичность и направленность излучения, поскольку газы имеют существенно меньшую плотность и большую однородность.
При малой плотности газа уширение линий люминесценции происходит только вследствие эффекта Доплера и существенно меньше, чем в конденсированных средах. Это позволяет получать высокомонохроматичное излучение.
Малая плотность газа не позволяет получить такую концентрацию активных частиц, как у конденсированных сред, и, следовательно, удельный энергосъем у газов существенно меньше, это утверждение справедливо для отпаянных лазеров; использование газовых лазеров высокого давления, применение прокачки газа существенно повысили мощность излучения Лазеров.
Кроме того, газовые среды возбуждаются вследствие разнообразных процессов — соударений в электрическом разряде, химических реакций, фотодиссоциации, газодинамических процессов, оптической накачки.
В газовых лазерах в качестве активного вещества используются:
— нейтральные атомы газов (Н, Не, О, Ne и др.), металлов (пары меди, золота, тулия, иттербия и др.);
— ионизированные атомы аргона (Аг), ксенона (Хе), азота (N), свинца (РЬ) и др.;
— двухатомные — СО (угарный газ), многоатомные — СО2 (углекислый газ), Н2О (вода) и молекулы других газов.
В активных веществах на нейтральных и ионизированных атомах для получения лазерного излучения используются переходы между электронными уровнями, а в молекулярных лазерах — между электронными, электронно-колебательными, колебательными, колебательно-вращательными и чисто вращательными уровнями. Генерирование лазерного излучения происходит в большинстве случаев по многоуровневой схеме.
Рис.1 Четырехуровневая система накачки в Гелий-Неоновом лазере.
2.3 Резонаторы
В лазерной технике в качестве резонаторов используются отражатели (зеркала), между которыми располагается активное вещество. В простейшем случае открытый резонатор состоит из двух плоскопараллельных зеркал. Использовать его для получения генерации в субмиллиметровом и инфракрасном диапазонах волн предложил А. М. Прохоров. Основная особенность оптического диапазона волн заключается в том, что длина волны электромагнитного излучения этого диапазона очень мала, так что практически всегда размеры резонаторов оказываются существенно больше длины волны. В сантиметровом диапазоне волн широко используются объемные резонаторы, размеры которых сравнимы с длиной волны. В таком резонаторе обычно возникает один, основной, тип колебаний, длина волны кр которого определяется размерами объемного резонатора и диэлектриком, заполняющим его. Колебания с большими длинами волн ( >кр) не возникают вследствие того, что не выполняются условия резонанса для них. Колебания же с <кр в резонаторе возникают, но потери для них в генераторе существенно больше, чем для основного колебания, и они быстро затухают. Число собственных типов колебаний объемного резонатора с идеально проводящими стенками определяется выражением
,
где V —объем резонатора, а длина волны собственного типа колебаний резонатора в форме прямоугольного параллелепипеда — из соотношения
=,
где m, n и q – целые числа; L и D – длины сторон параллелепипеда.
В оптическом диапазоне волн интервалы между частотами соседних типов колебаний очень малы, так что спектр собственных колебаний объемного резонатора практически непрерывный. В результате этого возможно одновременное возбуждение большого числа собственных колебаний, что не позволяет получить высокую монохроматичность излучения. Существенное разрежение спектра собственных колебаний наблюдается в открытых резонаторах, так как в них отсутствуют боковые стенки и, следовательно, стоячие волны не могут устанавливаться перпендикулярно длине резонатора.
В открытом резонаторе потери малы только для тех волн, направление распространения которых перпендикулярно плоскостям зеркал или отклонено от него на небольшой угол. Все остальные типы колебаний имеют очень большие потери и быстро затухают. В лазерной технике часто типы колебаний обозначают ТЕМnmq и называют модами. Различают поперечные и продольные моды открытых резонаторов. Поперечные моды характеризуют распределение поля на зеркалах. Порядок поперечной моды определяется числами m = 0, 1, 2, 3... и п = 0, 1, 2, 3,..., которые показывают, сколько полуволн имеет распределение поля вдоль стороны зеркала (рис). Продольные моды характеризуют распределение поля по длине резонатора. Порядок продольной моды определяется числом q, которое практически равно числу полуволн лазерного излучения, укладывающихся на длине
резонатора. Так как в лазерной технике обычно длина резонатора существенно больше длины волны лазерного излучения, то числа q очень большие. Изменение числа q на единицу мало меняет частоту (по сравнению с самой частотой) излучения лазера, поэтому часто одной поперечной моде (заданным числам т и n) соответствует большое число продольных мод. Режим работы лазера, при котором излучается одна или несколько поперечных мод с m=0 или n=0 и несколько продольных мод, называется многомодовым. Если же лазер излучает волну ТЕМоо, т. е. поперечную моду, характеризующуюся числами m=0, n=0, и несколько продольных типов колебаний, то режим работы лазера называют одномодовым. Таким образом, и в одномодовом режиме лазер излучает на нескольких частотах. Режим же работы лазера, при котором излучается только один тип поперечных и только один тип продольных колебаний, называют одномодовым и одночастотным.
Рис.2 Распределение поля для линейно-поляризованных колебаний в резонаторах с квадратными зеркалами.
Рассмотрим кратко, каким образом формируется спектр излучения лазера. Спектр излучения лазера определяется в основном шириной линии люминесценции активного вещества и собственными частотами резонатора. Лазер излучает только на тех частотах, которые являются собственными частотами резонатора, совпадают с линией люминесценции и коэффициент усиления для которых достаточен для компенсации всех потерь в резонаторе.
Линией люминесценции называют распределение интенсивности излучения по частотам. Линия люминесценции характеризуется формой, а наиболее простой характеристикой формы линии является ее ширина 2f, т. е. разность между частотами, интенсивность поглощения (излучения) на которых в заданное число раз меньше интенсивности, соответствующей максимуму поглощения (излучения). Ширина и форма линии зависят как от внешних условий, в которых находится данная атомная система, так и от внутренних, т. е. от природы атомной системы. Одной из причин, обусловливающих конечную ширину линии, является время жизни частиц в возбужденном состоянии. Значение ширины линии в этом случае определяется из соотношения неопределенностей Гейзенберга:. Ширина линии, обусловленная только этой причиной, является наименьшей для данной атомной системы и называется естественной шириной линии излучения (поглощения). Относительная интенсивность линии в этом случае описывается кривой Лоренца:
,
где f0 – частота, соответствующая максимуму линии излечения.
Внешние условия могут существенно изменить как ширину, так и форму линии. Так, в газах уширение линии происходит вследствие разброса скоростей частиц, соударений их друг с другом и со стенками сосуда; в твердых телах — вследствие действия электростатических полей кристаллической решетки, взаимодействия атомов с кристаллической решеткой и других причин.
2.4 Устройства накачки
Инверсная заселенность в активном веществе создается с помощью устройства накачки. В твердотельных лазерах устройство накачки состоит обычно из источника питания, лампы накачки и осветителя. Лампа накачки преобразует электрическую энергию постоянного или переменного тока в некогерентное оптическое излучение. С этой целью используются газонаполненные или начальные лампы. В газонаполненных лампах интенсивность и форма спектра излучения зависят как от газонаполнителя, так и от подводимой энергии. Подводимая энергия определяет температуру газоразрядной плазмы и, следовательно, непрерывную составляющую спектра излучения лампы накачки. Эта составляющая по форме напоминает огибающую спектра излучения абсолютно черного тела. Максимум излучения непрерывной составляющей определяется температурой газоразрядной плазмы, т. е. подводимой энергией.
Газ-наполнитель определяет дискретные составляющие спектра излучения лампы накачки. Положение составляющих спектра зависит от типа газа-наполнителя. Интенсивность же спектральных линий зависит как от типа газа, так и от подводимой энергии Uc. Эффективность преобразования электрической энергии в световое излучение обычно характеризуется коэффициентом полезного действия (КПД) лампы накачки. Он определяется как отношение энергии, излученной лампой накачки, к электрической энергии, подводимой к ней. Если питание к лампе накачки подводится от конденсатора емкостью С, то КПД лампы накачки определяется выражением
,
где - энергия оптического излучения лампы накачки; - начальное напряжение на конденсаторе. КПД лампы зависит от целого ряда факторов: состава и давления используемого газа, режима питания, диаметра разрядной трубки, расстояния между электродами и т.д. Наибольшим КПД обладают ксеноновые лампы. Осветитель предназначен для подвода с минимальными потерями энергии, излученной лампой накачки, к активному веществу. Высокая эффективность подвода энергии достигается с помощью различного типа отражающих и фокусирующих устройств. Форма отражателя осветителя зависит от формы активного элемента, его размеров и расположения относительно лампы накачки. В твердотельных лазерах широко применяются осветители, у которых лампа (лампы) расположена параллельно оси активного элемента, а отражатель имеет форму эллиптических цилиндров, в фокальных осях которого находятся активный элемент и лампа (лампы) накачки. Такие осветители имеют достаточно высокую эффективность. Так, осветители в виде эллиптического цилиндра с одной лампой накачки имеют эффективность около 75%. Потери в эллиптических осветителях обусловлены тем, что лампа и активный элемент имеют конечные размеры. Кроме того, значительная часть излучения лампы накачки проходит через активный элемент, не поглощаясь. Многократное отражение повышает эффективность цилиндрических осветителей и осветителей с плотным расположением активного элемента и лампы накачки. Размеры последних осветителей близки к размерам и лампы накачки, и активного элемента. Конфигурация осветителя в этом случае существенной роли не играет.
Твердотельные лазеры могут работать в импульсном и непрерывном режимах. Различают два импульсных режима работы твердотельных лазеров: режим свободной генерации и режим с модулированной добротностью. В режиме свободной генерации длительность импульса излучения практически равна длительности импульса накачки. В режиме же с модулированной добротностью длительность импульса существенно меньше длительности импульса накачки.
3. ПРИМЕНЕНИЕ ЛАЗЕРОВ
Одновременно с созданием первых лазеров начали развиваться различные направления их применений. Создание лазеров ликвидировало качественное отличие оптики от радиоэлектроники. Таким образом, все радиотехнические методы принципиально могут быть осуществлены и в оптическом диапазоне, причём малость длины волны лазерного излучения открывает ряд дополнительных перспектив. Лазеров большой мощности позволяют изучать разнообразные явления при взаимодействии света большой интенсивности со средой, ранее совершенно недоступные для эксперимента. В исследованиях молекулярного рассеяния света лазерные источники значительно расширили возможности экспериментальной техники, в частности позволили исследовать свойства жидкого и твёрдого гелия, провести первые исследования кинетики движения некоторых биологических объектов, например простейших бактерий. С помощью коротких и сверхкоротких импульсов можно изучать чрезвычайно быстрые релаксационные процессы в конденсированных средах с временем релаксации ~ 10-13 сек. Возможность формировать сверхкороткие импульсы света 10-11 - 10-12 сек имеет также очень важное значение для скоростной фотографии и ряда др. методов исследования быстропротекающих процессов. С помощью гелий-неонового лазера, обладающего высокой стабильностью частоты, возможно создание единого оптического стандарта длины (длина волны) и времени (частота). Для измерения абсолютного значения частоты гелий-неонового лазера (3,32 мкм) эта частота после преобразования измеряется в ед. частоты клистрона (0,074230 1012 Гц). Это позволяет получить наиболее точное значение скорости света с = 2,997924562 + 1,1 м/сек.
3.1 ТЕРМОЯДЕРНЫЙ СИНТЕЗ
Исключительно высокая эффективная температура излучения лазеров и возможность концентрировать энергию в ничтожно малом объёме открыли уникальные возможности испарения и нагрева вещества. Важнейшей задачей является нагрев плазмы до температур, достаточных для осуществления термоядерных реакций, то есть получения термоядерной плазмы. Современные лазеры способны за короткий промежуток времени — около 10-10 секунды — сконцентрировать энергию в чрезвычайно малом объеме — порядка 10-6см3. Это позволяет получить наиболее высокое на сегодняшний день контролируемое выделение энергии — до 1020 Вт/см2. Лазерные импульсы сжимают термоядерное «горючее» — смесь дейтерия D с тритием Т — примерно в 5*104 раз и нагревают его до температуры 10 кэВ (около 120 миллионов градусов). При этих условиях (сохраняющихся только на время действия лазерного импульса) может начаться термоядерная реакция с выделением нейтронов (n) и большого количества энергии:
D + Т = 4Не + n + 17,6 МэВ.
Использовать лазерное излучение для осуществления управляемого термоядерного синтеза предложили в 1961 году Н. Г. Басов и О. Н. Крохин (ФИАН). Установка для лазерного термоядерного синтеза представляет. Исключительно высокая эффективная температура излучения лазеров и возможность концентрировать энергию в ничтожно малом объёме открыли уникальные возможности испарения и нагрева вещества. Важнейшей задачей является нагрев плазмы до температур, достаточных для осуществления термоядерных реакций, то есть получения термоядерной плазмы. Современные лазеры способны за короткий промежуток времени — около 10-10 секунды — сконцентрировать энергию в чрезвычайно малом объеме — порядка 10-6см3. Это позволяет получить наиболее высокое на сегодняшний день контролируемое выделение энергии — до 1020 Вт/см2. Лазерные импульсы сжимают термоядерное «горючее» — смесь дейтерия D с тритием Т — примерно в 5*104 раз и нагревают его до температуры собой камеру, в которую помещается дейтерий—тритиевая мишень. На мишени фокусируется излучение нескольких мощных импульсных лазеров — от шести («Дельфин1», ФИАН) до двадцати («Nova», Ливермор, США). Установка «Искра-5», созданная во ВНИИЭФ («Арзамас-16»), имеет двенадцать лазерных каналов с общей энергией излучения 30 кДж.
Мишень представляет собой сферическую ампулу, содержащую несколько миллиграммов дейтериево-тритиевой смеси в виде льда (при температуре ниже 14 К) или газа под давлением до сотен атмосфер. Ампула окружена несколькими оболочками. Внутренние оболочки и экраны предохраняют содержимое от перегрева; внешняя, испаряясь под действием лазерного импульса, разлетается и создает реактивный импульс, который, складываясь со световым давлением, сжимает содержимое мишени. Лазерные импульсы, несущие энергию порядка 1014 Вт, фокусируются на мишени симметрично со всех сторон. Оболочка ампулы за время, гораздо меньшее длительности импульса, испаряется, ее вещество ионизуется и превращается в плазму (так называемую корону), которая разлетается со скоростью до 1000 км/с.
Лазерное излучение взаимодействует с плазмой по очень сложным законам и нагревает ее. Энергию из короны переносят в плотные слои мишени «горячие» электроны. Тепловой поток испаряет и нагревает новые слои оболочки, в результате чего вся энергия лазерного импульса превращается в тепловую и кинетическую энергию разлетающегося вещества. Его отдача и тепловое давление создают на границе испарения импульс сжатия более 106 атмосфер. Плотность вещества в периферийной части мишени возрастает до 102 — 103 г/см3, а в центральной — до 5 — 50 г/см3. При этих условиях во всей массе дейтериево-тритиевой смеси возникает