Аппарат экспрессии генов и его логика

Аппарат экспрессии генов и его логика


1. Основные положения процесса экспрессии генов

Экспрессия генов – это процесс реализации информации, закодированной в структуре ДНК, на уровне РНК и белков. Прежде чем переходить к детальному описанию и анализу этих процессов, мы вкратце рассмотрим суть экспрессии генов – ее механизм и регуляцию.

а. Транскрипция ДНК в РНК

Экспрессия всех генов начинается с транскрипции их нуклеотидной последовательности, т.е. перевода ее на язык РНК. При этом определенный участок одной из двух цепей ДНК используется как матрица для синтеза РНК путем комплементарного спаривания оснований. В результате транскрипции генов, в которых закодирована структурная информация о белках, образуются молекулы мРНК; другие гены кодируют молекулы РНК, являющиеся частью аппарата, необходимого для трансляции мРНК с образованием белков. У прокариот, например Е. coli, ДНК транскрибируется с помощью одного фермента – ДНК-зависимой РНК-полимеразы, который участвует в синтезе всех типов РНК. В отличие от прокариот эукариоты имеют три разные ДНК-зависимые РНК-полимеразы, каждая из которых ответственна за транскрипцию генов, кодирующих разные типы клеточных РНК. Несмотря на то, что механизмы синтеза РНК и матричного копирования для всех РНК-полимераз идентичны, каждый фермент узнает в матрице ДНК свои характерные особенности, определяющие сайты инициации, терминации и регуляции транскрипции.

б. Соответствие между нуклеотидными триплетами и аминокислотами

Генетический код устанавливает соответствие между нуклеотидной последовательностью данной мРНК и аминокислотной последовательностью синтезируемой на ней полипептидной цепи. Размер единиц кодирования и сами эти единицы, однозначно задающие ту или иную аминокислоту, практически одинаковы у всех живых организмов. Более того, основные принципы и механизмы перевода генетических посланий также универсальны.

Генетический словарь содержит 64 кодона, каждый из которых образован тремя последовательными нуклеотидами. 61 из 64 кодонов детерминируют 20 аминокислот, обнаруженных в белках, один определяет начало большинства последовательностей, кодирующих белки, и три обозначают окончания этих последовательностей.

Отличительной особенностью генетического кода является то, что каждый кодон кодирует только одну аминокислоту, т.е. код однозначен. Следовательно, зная словарь и правила пользования им, можно перевести нуклеотидную последовательность мРНК в определенную аминокислотную последовательность. Но генетический код является вырожденным. Это означает, что одной аминокислоте могут соответствовать несколько кодонов. Вырожденность генетического кода приводит к тому, что нельзя однозначно перевести аминокислотную последовательность данного белка в нуклеотидную последовательность соответствующей мРНК.

в. Расшифровка кода с помощью тРНК

Аминокислоты не взаимодействуют с соответствующими им кодонами непосредственно. Каждая аминокислота вначале связывается с адаптером – родственной тРНК, и образующаяся при этом аминоацил-тРНК узнает «родственный» кодон путем комплементарного спаривания оснований. Таким образом, декодирование осуществляется с помощью спаривания оснований триплетных кодонов мРНК с триплетными антикодонами в аминоацил-тРНК.

Присоединение аминокислот через карбоксильные группы к родственным тРНК катализируют ферменты, называемые аминоацил-тРНК-синтетазами. При связывании тРНК с аминокислотой карбоксильная группа последней активируется, и в результате образование пептидных связей становится энергетически выгодным. Энергия же, необходимая для активации аминокислоты при присоединении ее к тРНК, поступает от гидролиза АТР.

Присоединение аминокислот к родственным тРНК осуществляется с помощью специфических ферментов. Так, тирозил-тРНК-синтетаза присоединяет L-тирозин только к тем тРНК, которые могут спариться с тирозиновым кодоном. Аналогично лейцил-тРНК-синтетаза катализирует присоединение лейцина к молекулам тРНК, которые узнают кодоны лейцина. Таким образом, специфичность декодирования обеспечивается двумя реакциями: точным присоединением каждой аминокислоты к родственной ей тРНК и комплементарным спариванием антикодонов аминоацил-тРНК с соответствующими им кодонами в мРНК.

г. Правильная инициация трансляции

Имеются три «рамки считывания», при которых может осуществляться перевод последовательных нуклеотидных триплетов мРНК в аминокислоты. Правильная инициация трансляции чрезвычайно важна для точной расшифровки генетического кода. Выбор рамки считывания зависит от того, какое сочетание из трех последовательных нуклеотидов выбрано в качестве первого кодона. Ниже приведены три возможные рамки считывания для последовательности GUACGUAAGUAAGUAUGGACGUA:

Рамка считывания 1     GUA CGU AAG UAA GUA UGG ACG

Рамка считывания 2     G UAC GUA AGU AAG UAU GGA CGU

Рамка считывания 3     GU ACG UAA GUA AGU AUG GAC GUA

Обычно аминокислотной последовательности кодируемой полипептидной цепи соответствует только одна из рамок. Следовательно, должен существовать какой-то способ инициации трансляции с правильной рамкой считывания. У всех организмов, изученных к настоящему времени, – бактерий, вирусов и эукариот – правильная рамка считывания определяется с помощью механизма, распознающего специфический кодон, который детерминирует концевую аминокислоту синтезируемого белка. Почти всегда таким кодоном является триплет AUG, отвечающий метионину. Поэтому образующийся полипептид неизменно содержит на N-конце метионин, но при последующем удалении аминоконцевой последовательности на N-конце конечного белкового продукта оказывается аминокислота, находящаяся изначально внутри синтезированной полипептидной последовательности. В рассмотренном выше примере кодон AUG, с которого может начаться транскрипция, содержит рамка считывания 3.

д. Трансляция кодонов и соединение аминокислот

Последовательное спаривание разных аминоацил-тРНК с кодонами мРНК и рост полипептидной цепи осуществляются с помощью целой серии взаимно согласованных реакций. Одним из главных участников этого в высшей степени скоординированного процесса является рибосома – особый мультиферментный комплекс, состоящий из нескольких видов РНК и множества белков. Кроме того, целая армия ферментов и различных факторов катализирует мириады химических событий, необходимых для успешного синтеза белка.

Рибосомы, несущие особую инициаторную метионил-тРНК, находят инициаторный кодон в мРНК, AUG, и связываются с ним. Затем с рибосомой связывается аминоацил-тРНК, соответствующая второму кодону, и при участии рибосомной ферментативной активности остаток метионина соединяется со второй аминокислотой, все еще связанной со «своей» тРНК. В результате образуется дипептидил-тРНК. По мере продвижения рибосомы по цепи мРНК и считывания каждого последующего кодона полипептидная цепь удлиняется на одну аминокислоту за один шаг. Элонгация прекращается в тот момент, когда рибосома достигает одного из трех терминирующих кодонов. Завершенная полипептидная цепь тотчас же высвобождает последнюю тРНК, и происходит разделение рибосомы и мРНК.

е. Регуляция экспрессии генов на разных этапах образования РНК и белка

Клетки про- и эукариот обладают способностью к дифференциальной регуляции экспрессии генов. Так, при определенных условиях многие гены вообще не экспрессируются, а степень экспрессии других различается на несколько порядков. Изменение условий может привести к активации «молчавших» ранее генов и репрессии активно работавших. Подобная способность позволяет клеткам приспособить свои фенотипы к самым разнообразным условиям окружающей среды и физиологическим воздействиям. Дифференцированная экспрессия одного генома у многоклеточных организмов обусловливает развитие огромного множества типов клеток, имеющих специфические функции, из одной или нескольких зародышевых клеток.

Экспрессия генов, как правило, регулируется на уровне образования РНК. Обычно регулируемым этапом является инициация транскрипции, при этом регуляция осуществляется либо с помощью репрессорных белков, предотвращающих транскрипцию, либо с помощью активаторных, необходимых для ее начала. В первом случае транскрипция начинается только после того, как инактивируется репрессорный белок. Во втором ген транскрибируется лишь тогда, когда белок-активатор находится в соответствующем функциональном состоянии. В регуляции транскрипции генов участвуют не только репрессорные и активаторные белки. В некоторых случаях сами белки – продукты генной экспрессии – оказываются регуляторами транскрипции собственных генов. Эффективность транскрипции зависит также от конформационного состояния ДНК или РНК. Кроме того, регуляция синтеза РНК может осуществляться путем контроля скорости ее элонгации или с помощью «стоп-сигнала» в транскрибируемой последовательности, который может остановить транскрипцию гена. Модификация и / или процессинг, которые могут предшествовать образованию зрелой функциональной РНК, также регулируются.

Экспрессия генов может регулироваться и на уровне трансляции мРНК с образованием белков. И в этом случае специфическая регуляция, как правило, осуществляется на начальном этапе декодирования. Однако контроль может осуществляться и на разных этапах сборки полипептидной цепи. Более того, синтез тех белков, которые претерпевают посттрансляционные модификации или транспортируются к местам своего назначения внутри клетки, может регулироваться на каждом из этих этапов.

Позднее, когда мы проанализируем эти процессы подробнее, мы увидим, что механизмы регуляции экспрессии генов весьма разнообразны, многочисленны и очень сложны. И хотя многим из них присущи общие черты, тонкие механизмы регуляции всегда уникальны для данного гена, определенного физиологического состояния организма и условий окружающей среды. Анализ регуляторных механизмов бактериальных систем позволил выявить широкий спектр способов регуляции и координации экспрессии генов. Однако исследование механизма контроля экспрессии генов в клетках эукариот только начинается, а процессы, ответственные за дифференцировку многоклеточных организмов, пока остаются невыясненными.

2. Транскрипция: передача информации о нуклеотидной последовательности ДНК на уровень РНК

В этом и следующем разделах мы рассмотрим некоторые аспекты переноса информации о нуклеотидной последовательности ДНК на уровень РНК – процесса, ответственного за синтез всех типов клеточных РНК как у про-, так и у эукариот. Подавляющее число пионерских работ, в которых изучалась транскрипция, – природа соответствующих реакций и их субстраты, ферментативный аппарат, сигнальные нуклеотидные последовательности, определяющие, какие области ДНК должны транскрибироваться, некоторые способы процессинга, превращающего первичные транскрипты в зрелые молекулы РНК, – было выполнено на прокариотических системах. Параллельное проведение генетических и биохимических экспериментов позволило исследовать ферменты, участвующие в транскрипции, и механизм самого этого процесса. Предпринимаемые в то же время усилия по изучению транскрипционного и регуляторного аппаратов у эукариот были сильно затруднены и гораздо менее успешны главным образом из-за того, что компоненты их транскрипционного аппарата – ДНК в форме хроматина и РНК-полимеразы – были слабо охарактеризованы. Кроме того, была неизвестна природа транскрипционных единиц, а применение генетических подходов для их определения было невозможно.

Ситуация резко изменилась с появлением методов молекулярного клонирования. Сейчас многие гены, составляющие различные типы транскрипционных единиц, выделены, секвенированы и даже соответствующим образом модифицированы с целью исследования их функций. Более того, использование некоторых современных подходов позволило по-новому посмотреть на транскрипционный аппарат самых разных организмов – от дрожжей до человека. Имеются в виду методы введения ДНК в культуры клеток млекопитающих и даже в клетки целого организма животных, применяемые наряду с традиционными методами исследования очищенных транскрипционных систем in vitro. Одновременно был достигнут прогресс в установлении структуры хроматина и свойств эукариотических РНК-полимераз. Подробные данные о структуре генов, механизме транскрипции и непосредственно связанных с ней посттранскрипционных событиях, происходящих при синтезе РНК у эукариот.

а. Синтез РНК на ДНК-матрице

Двухцепочечная молекула ДНК – это физиологическая матрица для синтеза всех клеточных РНК. Даже если геном, как у некоторых вирусов, представлен одноцепочечной ДНК, последняя перед транскрипцией обязательно переходит в двухцепо-чечную репликативную форму. Транскрибирована может быть любая из двух цепей геномной ДНК, однако матрицей при транскрипции отдельного гена обычно служит только какая-то одна из них. Впрочем, в некоторых случаях все мРНК транскрибируются с одной и той же цепи. Очень редко транскрипция идет на обеих цепях в одном и том же месте, так что образующиеся цепи РНК оказываются комплементарны друг другу; возможно, подобный способ транскрипции имеет особое регуляторное значение.

Нуклеотидными предшественниками для синтеза РНК являются четыре рибонуклеозид-5'-трифосфата: ATP, GTP, UTP и СТР. Многие РНК содержат модифицированные нуклеотиды, но изменения в основаниях и рибозных остатках происходят после полимеризации, т.е. посттранскрипционно. Тем не менее, РНК-полимеразы могут использовать рибонуклеозид-5'-трифосфаты, отличные от указанных четырех, при условии, что модифицированные основания обладают способностью к спариванию, сравнимой с таковой для аденина, гуанина, цитозина и урацила.

РНК-полимеразы катализируют реакцию присоединения 3'-ОН-группы нуклеотида, находящегося на растущем конце цепи, к а-фосфату следующего рибонуклеозид-5'-трифосфата. Многократное повторение этой реакции приводит к постепенному удлинению цепи РНК. Образование каждой новой фосфодиэфирной связи сопровождается высвобождением неорганического пирофосфата; быстрый гидролиз пирофосфата до неорганического фосфата in vivo делает реакцию образования фосфодиэфирной связи энергетически выгодной.

Транскрипция аналогична репликации в том смысле, что для ее осуществления также нужна ДНК-матрица. Порядок присоединения нуклеотидов определяется комплементарным спариванием оснований. Чтобы могло происходить комплементарное спаривание каждого следующего нуклеозидтрифосфата с матричным транскрибируемым основанием, спираль ДНК во время транскрипции должна раскручиваться с помощью ДНК-полимеразы. Растущая цепь РНК остается связанной с ферментом и спаренной своим растущим концом с участком матричной цепи длиной 20–30 нуклеотидов; остальная часть образовавшейся цепи не связана ни с ферментом, ни с ДНК. По мере продолжения транскрипции временно разошедшиеся цепи ДНК воссоединяются и восстанавливается исходная дуплексная структура. Таким образом, транскрипция – процесс консервативный, в котором сохраняется двойная спираль ДНК, а синтезированная цепь РНК отделяется. В противоположность этому репликация ДНК полуконсервативна, поскольку обе цепи исходного дуплекса распределяются по двум дочерним спиралям. Другое существенное различие между репликацией и транскрипцией ДНК состоит в том, что репликация не может начаться без затравки – праймера, а инициация синтеза РНК с помощью РНК-полимеразы происходит de novo, начинаясь с рибонуклеозидтрифосфата, соответствующего первому нуклеотиду в цепи РНК.

Наращивание РНК идет в направлении от 5' - к 3'-концу вдоль матричной цепи, ориентированной в направлении 3'–>5', т.е. антипараллельно. Несмотря на процессивный характер элонгации, ее скорость вдоль матрицы не постоянна. В некоторых местах фермент делает остановки; возможно, это происходит там, где в одноцепочечной ДНК или в самой РНК образуются внутрицепочечные дуплексы, мешающие продвижению полимеразы. Такие паузы могут при определенных обстоятельствах приводить к преждевременной терминации транскрипции. Как мы вскоре увидим, сигналами для нормальной терминации и отделения синтезированной РНК и полимеразы от матрицы являются особые структуры РНК – шпильки.

Каков механизм однонаправленного движения РНК-полимеразы вдоль матричной ДНК, остается неясным. Не знаем мы пока и того, как расплетается и заплетается вновь во время транскрипции дуплекс ДНК и почему восстановление этого дуплекса более выгодно, чем образование дуплекса ДНК-РНК. Можно лишь отметить, что, поскольку РНК-полимераза одна осуществляет все эти функции in vitro даже в случае ковалентно замкнутых кольцевых

Исследования с применением препаратов, ингибирующих РНК-полимеразу, и с ферментами, субъединицы которых были изменены в результате мутации, несколько прояснили роль корсубъединиц. в-Субъединица скорее всего участвует в связывании рибонуклеозидтрифосфатов в реакциях инициации и элонгации. Комплекс а- и в'-субъединиц участвует в неспецифическом прочном связывании с ДНК и в специфическом взаимодействии холофермента с промоторами – сайтами, детерминирующими инициацию транскрипции. Наиболее полно по сравнению со всеми другими субматричных ДНК, все секреты, по-видимому, кроются в самом этом ферменте. Для сравнения вспомним, что ДНК-полимеразы не способны к инициации синтеза новых цепей de novo и что в процессах расплетания и восстановления дуплексов при репликации двухцепочечной ДНК участвуют геликазы и топоизомеразы.

б. ДНК-зависимые РНК-полимеразы

У прокариот синтез всех видов РНК–мРНК, рРНК и тРНК, а также более специализрованных РНК, участвующих в процессинге РНК, – катализируется единственной ДНК-зависимой РНК-полимеразой. Бактериальные РНК-полимеразы – это сложные белки, состоящие из нескольких разных субъединиц. Наиболее изученный фермент – холофермент РНК-полимераза Е. coli – содержит пять разных полипептидных субъединиц: две а-цепи, одну в- и одну в'-цепи, а- и ю-цепи. Альтернативная, сосуществующая с первой форма фермента, называемая кором, лишена а-субъединицы.

Единицами холофермента изучена роль а-субъединицы. Корфермент, лишенный а-субъединицы, катализирует большинство реакций, необходимых для транскрипции ДНК с образованием РНК, а именно комплементарное копирование матричной цепи, образование фосфодиэфирных связей и терминацию цепи РНК. Однако он не может инициировать синтез РНК в нужном месте, поскольку не способен узнавать промоторные сайты. Точное связывание и инициация в промоторах происходят только после добавления к корферменту а-субъединицы и образования холофермента. Такое поведение можно объяснить, например, тем, что корфермент очень прочно, но неспецифично связывается с ДНК, а поэтому редко оказывается в том месте, где находится промотор. И напротив, холофермент связывается с неспецифическими участками ДНК непрочно и, последовательно связываясь с разными областями ДНК, находит промотор и прочно связывается с ним. После образования нескольких первых фосфодиэфирных связей а-субъединица отделяется от инициирующего комплекса, и дальнейшая транскрипция осуществляется с помощью корфермента. Транскрипция непрерывно продолжается до тех пор, пока фермент не достигнет сайта терминации транскрипции. Итак, а-субъединица обеспечивает эффективное связывание холофермента с промотором, а при ее отсоединении полимераза переключается на элонгацию. А-Субъединица может снова стимулировать инициацию, специфически связавшись с другой молекулой РНК-полимеразы.

Имеются данные о том, что способность РНК-полимеразы узнавать промотор может изменяться при связывании с разными а-субъединицами. Так, после заражения Bacillus subtilis определенными бактериофагами или на ранних стадиях спо-руляции экспрессируются разные а-субъединицы и в результате изменяется порядок транскрипции клеточных и вирусных генов. Использует ли РНК-полимераза других прокариот различные а-субъединицы для регуляции промоторной специфичности, пока неизвестно.

Не все РНК-полимеразы прокариот представляют собой мультисубъединичные ферменты. РНК-полимеразы, кодируемые бактериофагами Т3 и Т7 Е. coli, – это одиночные полипептидные цепи средней длины. Эти ферменты высокоспецифичны в отношении промоторных сайтов, используемых для транскрипции определенного набора вирусных генов. Такие «упрощенные» ферменты обладают всеми активностями мультисубъединичных РНК-полимераз. Они катализируют синтез РНК на ДНК-матрицах и осуществляют правильную терминацию цепей РНК.

в. Транскрипция инициируется в особых нуклеотидных последовательностях

Транскрипция инициируется при образовании стабильного комплекса между холоферментом и специфической последовательностью, называемой промотором и располагающейся в начале всех транскрипционных единиц. Изучение нуклеотидной последовательности более чем 50 разных промоторных сайтов прокариот и мутационный анализ выявили только два консервативных участка, по-видимому играющих ключевую роль в узнавании и функционировании промотора. Одна из этих последовательностей состоит из шести или семи пар оснований и расположена на расстоянии примерно 10 оснований до того нуклеотида, с которого начинается транскрипция; этот сигнал обычно обозначают как –10-последовательность. Сравнительный анализ 10-последовательностей примерно 50 промоторов прокариот показал, что все они немного отличаются от консенсус-последовательности ТАТААТ. Подчеркнутый Т присутствует почти во всех промоторах, тогда как по другим позициям в каждом промоторе может наблюдаться от одного до нескольких вариантов.

Вторая последовательность, длина которой обычно равна девяти нуклеотидам, расположена на расстоянии ~ 35 оснований до сайта инициации и также встречается в большинстве промоторов прокариот. Нуклеотидная последовательность сегмента между –35- и –10-участками не является критической, важно лишь расстояние между этими участками. –35-последовательность участвует в связывании РНК-полимеразы, которое предшествует перемещению фермента в Прибновбокс. Возможно, РНК-полимераза вызывает локальное раскручивание спирали, начиная этот процесс с Прибновбокса, и создает условия для инициации синтеза РНК.

Однако остается открытым вопрос, достаточно ли простого связывания РНК-полимеразы с промотором для локального расхождения цепей вблизи сайта инициации синтеза РНК или РНК-полимераза расплетает спираль в стартовом сайте. Независимо от механизма образование «открытого» промоторного комплекса позволяет РНК-полимеразе осуществить спаривание первого и второго рибонуклеозид-трифосфатов с матричной цепью и катализировать образование первой фосфодиэфирной связи.

Различия в эффективности транскрипции индивидуальных генов отчасти зависят от структуры их промоторов. Как прочность взаимодействия РНК-полимеразы с промоторной последовательностью, так и эффективность образования «открытого» промоторного комплекса определяются конкретными нуклеотидными последовательностями –35- и –10-участков соответственно. Мутации в этих участках приводят к значительным изменениям способности многих промоторов обеспечивать инициацию транскрипции. В некоторых случаях инициацию транскрипции в малоэффективных промоторах облегчают вспомогательные белки, связывающиеся с ДНК вблизи –35-последовательностей. Суть подобного феномена до конца не выяснена, но известно, что иногда белки, связывающиеся с –35-последовательностью, увеличивают вероятность того, что она будет обнаружена РНК-полимеразой и свяжется с ней. Связывание белков-активаторов может привести также к изменению структуры ДНК и тем самым способствовать инициации транскрипции. Изменение топологической структуры ДНК – особенно увеличение числа отрицательных сверхвитков – также может приводить к повышению или снижению эффективности некоторых промоторов.

г. Терминация транскрипции и отделение цепей РНК

Последовательности ДНК, являющиеся сигналами остановки транскрипции, называются транскрипционными терминаторами. Обнаружены два типа сигналов терминации – р-зависимый и р-независимый терминаторы. Оба они имеют некоторые общие признаки. И тот и другой содержат инвертированные повторы, благодаря чему 3'-концы РНК-транскриптов складываются с образованием шпилек разной длины. Стебли шпилек р-независимых терминаторов обычно содержат GC-богатые участки; один из них находится вблизи основания стебля, и к нему примыкает участок, состоящий из четырех-шести уридиловых и одного-двух адениловых остатков. В стебле р-зависимых терминаторов, напротив, содержится лишь несколько GC-пар, а уридиновые 3'-хвосты могут отсутствовать.

Точный механизм р-независимой и р-зависимой терминации транскрипции является пока предметом дискуссий. Наиболее вероятным представляется следующее объяснение р-независимой терминации: РНК-полимераза останавливается после транскрипции инвертированного повтора, потому что шпилечная структура оказывается помехой. В результате сразу после остановки процесса РНК отделяется от матричной цепи вблизи U-богатого участка, который относительно слабо спарен с А-богатым участком матрицы. Этим, по-видимому, объясняется то обстоятельство, что наиболее часто на конце цепи РНК находятся уридиловые или адениловые остатки.

Р – это олигомерный белок, прочно связывающийся с РНК и в этом состоянии гидролизующий АТР до ADP и неорганического фосфата. В одной из моделей действие р-белка объясняется тем, что он связывается с синтезируемой цепью РНК и перемещается вдоль нее в направлении 5' – >3' к месту синтеза РНК; необходимая для его перемещения энергия выделяется при гидролизе АТР. Если р-белок наталкивается на образующуюся в РНК шпильку, он останавливает полимеразу, которая могла бы продолжать транскрипцию. Возможно, для отсоединения РНК от матрицы достаточно этой р-индуцированной остановки, но не исключено, что диссоциации и отделению способствует сам р-белок.

Терминация транскрипции редко является абсолютно зависимой или абсолютно независимой от р-белка. Некоторые р-независимые терминаторы работают в присутствии р более эффективно. А в некоторых условиях так называемые р-зависимые терминаторы вызывают терминацию и в отсутствие р, хотя и не столь успешно.

Терминация, как и инициация синтеза РНК, является регулируемым процессом. Существуют белки, функционирующие как антитерминаторы и предотвращающие терминацию в р-независимых терминаторах; известны также другие белки, ингибирующие р и тем самым обеспечивающие удлинение цепи после сигналов терминации. При определенных обстоятельствах молекулы РНК могут образовывать альтернативные шпилечные структуры на особых последовательностях определенных участков ДНК. Одни из таких структур могут приводить к абортивной терминации, а другие – к продолжению транскрипции.

3. Процессинг РНК у прокариот

Первичные транскрипты, образующиеся при транскрипции прокариотических генов, кодирующих белки, функционируют в качестве мРНК без последующей модификации или процессинга. Действительно, трансляция мРНК часто начинается даже до завершения синтеза 3'-конца транскрипта. Совсем иная ситуация наблюдается для молекул рРНК и тРНК. В этом случае кластеры рРНК-или тРНК-генов или даже перемежающиеся участки этих генов часто транскрибируются с образованием единой цепи РНК. И хотя транскрипция этих генов всегда начинается на определенных промоторах и заканчивается на определенных терминаторах, для образования зрелых функциональных форм должны произойти специфическое надрезание первичных РНК-транскриптов и модификация. Подобные молекулярные события называют общим терминомпосттранскрипционные модификации или просто процессинг РНК. Механизмы процессинга рРНК и тРНК и ферменты, с помощью которых он осуществляется, наиболее полно изучены у Е. coli, и для иллюстрации особенностей посттранскрипционного процессинга РНК мы используем эту систему. Аналогичные модификации эукариотических РНК; в этом случае помимо процессинга рРНК и тРНК используются более сложные системы созревания транскриптов с образованием мРНК.

а. Группы генов, кодирующих рРНК и тРНК

В геноме Е. coli идентифицированы и картированы семь дискретных транскрипционных единиц, кодирующих рРНК. Каждая транскрипционная единица – это молекула РНК, которая состоит из ~5000 нуклеотидов и содержит по одной копии кодирующих последовательностей для 5S-, 16S- и 23S-pPHK. Транскрипция в этой области осуществляется в направлении 16S –> 23S –> 5S. Помимо этих трех последовательностей, кодирующих рРНК, транскрипты содержат вставки разной длины и одну или более копий тРНК-генов. Спейсеры могут находиться перед последовательностями для рРНК, между ними и после них, а тРНК-гены обычно лежат в пределах вкрапленных или 3'-концевых спейсерных сегментов. Для образования функционально зрелых молекул РНК должен произойти процессинг таких транскриптов. До процессинга или во время него происходит модификация специфических оснований в спейсерах, а также в рРНК- и тРНК-генах.

б. Разрезание рРНК-тРНК-котранскриптов

Начальное расщепление первичных транскриптов на фрагменты, содержащие либо тРНК, либо 16S-, 23S- или 58-рРНК-последовательности, осуществляет эндонуклеаза РНКаза III. Ее мишенями служат короткие дуплексы РНК, образующиеся при внутримолекулярном спаривании оснований в последовательностях, фланкирующих каждый из рРНК-сегментов. Например, комплементарные участки в спейсерных областях, фланкирующих последовательность 16S-pPHK, образуют стебель шпильки, в петле которой находится последовательность 16S-pPHK. Аналогичные шпильки образуют и последовательности 23S- и 5S-pPHK. РНКаза III вносит разрывы в двухцепочечный стебель, в результате образуется цепь РНК, содержащая последовательность той или иной рРНК, фланкированную короткими спейсерными участками с 5'-фосфатным и 3'-гидроксильным концами. Затем лишние нуклеотиды спейсерных последовательностей удаляются, возможно с помощью той же самой РНК-экзонуклеазы, которая катализирует и последние этапы процессинга тРНК. В принципе для того, чтобы произошло ферментативное расщепление, должны быть транскрибированы только те нуклеотидные последовательности, которые образуют шпильки. Однако процессинг происходит лишь после завершения синтеза всего первичного транскрипта, поскольку, по-видимому, для правильной укладки целого РНК-транскрипта, который и распознается эндонуклеазой III, необходимы рибосомные или какие-либо другие белки. Процессинг тРНК-сегментов, выщепляющихся из мультигенных транскриптов, осуществляется так же, как и процессинг тРНК из транскрипционных единиц одиночных генов.

в. Образование зрелых тРНК из более крупных транскриптов

Несмотря на то, что некоторые кодирующие тРНК гены находятся внутри транскрипционных единиц рРНК и экспрессируются совместно с генами рРНК, основная часть тРНК-генов представлена одиночными генами или объединена в кластеры. Одни кластеры содержат множественные повторы одних и тех же генов, другие – различные и неродственные тРНК-гены. В некоторых случаях каждый кластер транскрибируется как одна большая молекула РНК, которая подвергается процессингу с последовательным выщеплением зрелых тРНК-фрагментов. Для образования зрелой функциональной тРНК, по-видимому, должны произойти специфическая модификация оснований и присоединение одного, двух или всех трех нуклеотидов 3'-ССА-конца.

Независимо от того, содержит ли первичный транскрипт одну или более тРНК-последовательностей или эти последовательности внедрены в спейсерные участки рРНК, 5'-концы всех тРНК образуются при участии одной эндонуклеазы, называемой РНКазой Р. По-видимому, РНКаза Р узнает характерную свернутую структуру тРНК в полинуклеотиде-предшественнике и отщепляет лидерную или спейсерную последовательности, расположенные перед 5'-концом зрелой последовательности тРНК. 3'-концы тРНК образуются с помощью нескольких активностей. До сих пор неидентифицированная эндонуклеаза расщепляет предшественник в том месте шпильки, где находится 3'-конец зрелой тРНК, а затем другая эндонуклеаза, РНКаза D, завершает образование правильного 3'-конца. В некоторых случаях экзонуклеазное расщепление прекращается точно у 3'-ССА-конца зрелой тРНК, а в других случаях под действием экзонуклеазы образуется конец, служащий затравкой, к которому тРНК-нуклеотидилтрансфераза добавляет один или более инвариантных концевых нуклеотидов.

Отличительной особенностью РНКазы Р является то, что сайт расщепления для нее формируется в результате правильной укладки молекулы тРНК. Изменения в нуклеотидной последовательности, не приводящие к нарушению этой укладки, не сказываются и на процессинге 5'-конца. Другим необычным свойством РНКазы Р является то, что она состоит из белка и РНК. Эта РНК имеет специфическую последовательность из 377 нуклеотидов и сама транскрибируется РНК-полимеразой с гена чуть большего размера и затем подвергается процессингу до размера зрелой молекулы. Удивительной особенностью этой РНК оказалось то, что она одна может катализировать такую же эндонуклеазную реакцию, что и целый рибонуклеопротеин; белок же не обладает самостоятельной эндонуклеазной активностью. Таким образом, эндонуклеазная активность может быть присуща самой РНК, а белок, по-видимому, необходим для сохранения структуры РНК в максимально активной конфигурации.

Зрелые тРНК не только имеют характерную конформацию, но и содержат модифицированные нуклеотиды. Многие из таких модификаций оказываются существенными для выполнения некоторых физиологических функций тРНК. Сегодня охарактеризованы лишь немногие из целой армии ферментов, катализирующих огромное количество реакций модификации. Однако ясно, что модификации происходят в основном на стадии РНК-предшественника и в полностью процессированной тРНК. Такие модифицирующие ферменты представляют особый интерес благодаря своей необычной специфичности в отношении определенных последовательностей: например, только отдельные урациловые остатки превращаются в тиоурацил, метилируются до тимина или восстанавливаются до дигидроурацила. Еще более загадочным представляется образование псевдоуридилата при модификации обычной связи между урацилом и рибозой.

4. Генетический код

Последовательность аминокислот в белках определяется порядком расположения дезоксинуклеотидов в генах, кодирующих белки, точнее – последовательностью рибонуклеотидов в мРНК-транскриптах. Информационная связь между нуклеотидными и аминокислотными последовательностями осуществляется с помощью генетического кода. Для составления генетического словаря было проведено множество специальных генетических и биохимических экспериментов. Он включает также и знаки препинания – начало и конец участков, кодирующих белки. За исключением незначительных вариаций в использовании нескольких нуклеотидов для кодирования особых аминокислот у митохондрий и некоторых инфузорий, генетический словарь универсален, т.е. конкретная последовательность нуклеотидов задает одинаковую для всех живых организмов аминокислотную последовательность.

Наличие подобной системы кодирования подразумевает существование некоего механизма для перевода информации с языка нуклеотидов на язык аминокислот. Как и следовало ожидать, этот механизм и реакции, осуществляющие перевод, очень сложны. Несмотря на различия между про- и эукариотами как в том, что касается структуры мРНК, так и в физическом взаимоотношении генов и аппарата трансляции, оба типа организмов используют весьма сходные механизмы для расшифровки генетических посланий.

а. Аминокислотная последовательность белков соответствует нуклеотидной последовательности кодирующих их генов

Предполо

Подобные работы:

Актуально: