Моделирование схемы усилителя НЧ на МДП-транзисторах
Содержание
1. Задание
2. Технические характеристики усилителя НЧ
3. Теоретические сведенья
4. Описание схемы усилителя
4.1 Описание
4.2 Конструкция и детали
4.3 Налаживание
5. Моделирование схемы в пакете Multisim 8
5.1 Подбор элементной базы и проверка работоспособности
5.2 Частотные и фазовые искажения
5.3 Анализ по переменному току
5.4 Анализ Фурье
5.5 Переходная характеристика
5.6 Переходный анализ
5.7 Коэффициент гармоник
5.8 Анализ искажений
5.9 Анализ сигнал/шум
5.10 Анализ шума
5.11 Температурный анализ
5.12 Параметрический анализ
6. Заключение
Список литературы
1. Задание
Промоделировать схему усилителя НЧ на МДП- транзисторах в программе Multisim 8. Также проверить характеристики получившийся схемы на соответствие техническим характеристикам данного усилителя используя следующие анализы, входящие в пакет Multisim 8:
- Анализ по переменному току (АЧХ, ФЧХ);
- Анализ Фурье;
- Переходный анализ;
- Температурный анализ;
- Параметрический анализ;
- Анализ шума
- Анализ сигнал/шум
- THD анализ
-Анализ искажений
2. Технические характеристики усилителя НЧ
Номинальная выходная мощность, Вт на нагрузке сопротивлением
8 Ом.………………35
Номинальный диапазон частот, Гц
при неравномерности АЧХ не более 0,5 дБ……………………. 20 - 2000
Коэффициент гармоник, %, при номинальной выходной мощности на частоте Гц
100 ………………….0,01
1000…………………0,05
10000 ……………….0,1
20000………………..0,15
Скорость нарастания выходного напряжения, В/мкс ………………...30
Глубине обшей ООС, дБ ………………………………………………..60
Отношение сигнал/шум, дБ …………………………………………….80
Коэффициент передачи …………………………………………………24
КПД, % …………………………………….…………………………….60
3. Теоретические сведенья
Применение мощных полевых транзисторов с изолированным затвором (МДП-транзисторы) в выходных каскадах усилителей мощности позволяет резко снизить нелинейные и динамические искажения.
Упрошенные схемы возможных вариантов включения полевых транзисторов выходных каскадах показаны на рис. I, а—д. Для выявления наиболее целесообразного сочетания этих вариантов в двухтактном выходном каскаде воспользуемся соотношениями, связывающими их выходное напряжение UM с управляющим током I0, сопротивлением нагрузки RH, крутизной транзистора S и сопротивлениями резисторов R и I в цени его затвора. Для рассматриваемых вариантов эти зависимости соответственно имеют вид:
Нетрудно видеть, что хорошо стыкуются друг с другом варианты по схемам на рис. 1. а и б. При типовом значении крутизны транзисторов КП904А. равном 250 мА/В, и сопротивлении в цепи затвора R, равном 20 кОм. зависимости их выходных напряжений от токов управления и сопротивления нагрузки фактически одинаковы (с точностью до 0,02%). В результате при равных значениях крутизны используемых полевых транзисторов построенный по этим схемам выходной каскад оказывается практически симметричным.
Следует отметить, что симметрию плеч выходного каскада можно улучшить и увеличением сопротивлений в целях затворов полевых транзисторов. Однако в этом случае возрастает постоянная времени указанных цепей, вследствие чего увеличивается вероятность появления динамических искажений. Учитывая это обстоятельство и принимая во внимание, что емкость затвор-исток транзистора КП904А составляет 20 кОм. К недостаткам рассмотренного выходного каскада следует отнести использования в нем транзисторов с возможно более близкими значениями крутизны (от этого зависит симметрия каскада) и довольно большие нелинейные искажения (около 5 %).
Наилучшие показатели усилителей мощности могут обеспечить выходные каскады, построенные по схемам, приведенным на рис. 1 г и д. Так же, как и каскады, собранные по схемам на рис. 1 а и б при типовых значениях крутизны полевого транзистора S —250 мА/В и сопротивлении резистора в цепи затвора R=20 кОм они имеют практически одинаковые зависимости выходного напряжений от тока управления и сопротивления нагрузки, причем с увеличением крутизны точность их совпадения увеличивается. В результате улучшается симметрия плеч выходного двухтактного каскада, снижаются вносимые им нелинейные искажения
Необходимо отметить, что каждое из устройств по схемам на рис I. г и д охвачено глубокой местной ООС. В первом случае это последовательная ООС по току (нагрузка включена в цепь истока), во втором — параллельная по напряжению (резистор R включен между стоком и затвором транзистора). По этой причине каскады вносят небольшие искажений (при разомкнутой цепи общей ООС - примерно 0,5%). Симметрии построенного на их основе выходного двухтактного каскада при использовании других, показанных на рис. 1 устройств, зависит от разброса значений крутизны работающих в нем транзисторов.
Что же касается варианта по схеме на рис. 1 в, то его использование в двухтактном выходном каскаде нецелесообразно.
4. Описание схемы усилителя
4.1 Описание
Первый каскад усилителя мощности представляет собой дифференциалы усилитель на транзисторах VT1, VT3 с источником тока на транзисторе VT2. Выходные сигналы дифференциального каскада усиливаются транзисторами VT4 и VT6 и поступают на выходной каскад усилителя, выполненный на полевых МДП- транзисторах VT8 и VT9. Источники тока на транзисторах VT5, VT7 выполняют функции активной на грузки каскадов на транзисторах VT4, VT6. Ток покоя выходного каскада устанавливают резистором R7. Для улучшения раскачки выходных транзисторов в усилительных каскадах на транзисторах VT4, VT5 и VT6, VT7 введена вольтодобавка. Диоды VD6, VD9 и стабилитроны VD7, VD8, VD10, VD11 защищают затворы МДП-транзисторов от пробоя и ограничивают выходной ток при коротком замыкании в цепи нагрузки. Асимметрию плеч выходного каскада при разных значениях крутизны полевых транзисторов устраняют подбором резистора R21. Для исключения самовозбуждения усилителя вследствие склонности МДП-транзисторов к генерации в высокочастотном диапазоне, нагрузка подключена к выходу усилители через фильтр R16C9L1R22C12, источник питания зашунтирован конденсаторами C3, C4 и С10, С11, между эмиттерами транзисторов VT4 и VT6 включен конденсатор С8, резистор R11 зашунтирован конденсатором C6. Во избежание перегрузки усилители сигналами, частота которых более 20 кГц, диапазон усиливаемых им частот ограничен соответствующим выбором емкости конденсаторов С1, С2, С5, которая, кстати, не должна отличаться от указанной на схеме более чем на 30%.
4.2 Конструкция и детали
Детали усилителя смонтированы на печатной плате (рис 3), изготовленной из двустороннего фольгированного стеклотекстолита толщиной 3 мм. Фольге со стороны установки деталей (выделена штриховкой) использована в качестве общего провода. Крестиками обозначены места припайки к ней выводов соответствующих деталей, двумя концентрическими окружностями – отверстия, через которые пропущены проволочные перемычки, соединяющие ее с печатными проводниками на другой стороне платы. Полевые транзисторы VT8, VT9 установлены на ребристых теплоотводах с площадью охлаждающей поверхности около 500 см2, которые, в свою очередь, закреплены на плате усилителя. Плата рассчитана на установку постоянных резисторов МЛТ, подстроечного резистора СПЗ-5, электролитических конденсаторов K50-3 (С1, С5), К50-22 (С7) и керамических конденсаторов КМ-56. В качестве катушки L1 использован стандартный дроссель Д-2,4 с индуктивностью 20 мкГн.
Кроме указанных на схеме, в первом каскаде усилителя (VT1-VT3) могут работать транзисторы КТ313А, КТ208К, КТ209К. Для дифференциального каскада желательно подобрать пару экземпляров с близкими параметрами. Вместо транзисторов КТ630Б (они тоже должны быть с близкими параметрами) можно использовать транзисторы КТ630А или КТ605 с любым буквенным индексом, вместо КТ816Г — КТ814Г, КТ816В (VT5) и КТ814В, КТ814Г (VT9)., вместо КП904А — КП904Б. Допустима замена стабилитронов КС211Е на КС212Е, KC213E, диодов КД103А - на Д223 с любым буквенным индексом или КД522А. Функции диодов КД223А могут выполнять диоды КД103А.
Усилитель хорошо подавляет синфазные помехи и может работать от нестабилизированного источника питания, однако более предпочтителен стабилизированный источник.
4.3 Налаживание
Налаживание усилителя сводится к установке (подстроечным резистором R7) тока покоя транзисторов выходного каскада (В пределах 50 - 200 мА), при котором искажения типа ступенька отсутствуют. Делать это необходимо после 10 - 15-минутного прогрева усилителя с подключенной нагрузкой в реальных условиях охлаждения выходного каскада. Следует учесть, что при включении налаженного усилителя после перерыва в работе, ток покоя в первый момент будет большим (сквозной ток полевых транзисторов может достигать 1А и более). Однако бояться этого не следует — через 1..2 мин. он снизится до значения, установленного при регулировке, и в дальнейшем изменяться практически не будет (такое саморегулирование выходного каскада обусловлено действием ООС по температуре кристалла МДП-транзисторов).
Возможное самовозбуждение усилителя устраняют включением между коллектором транзистора VT5 и точкой соединения конденсатора С6 с резистором R11 (на плате) дополнительного конденсатора емкостью около 200 пФ. Следует, однако, учесть, что это приведет к почти двойному увеличению коэффициента гармоник на частотах 10-20 кГц (из-за нарушения симметрии выходного каскада, вызванного паразитными емкостями полевых транзисторов на этих частотах). Снизить искажения в подобном случае можно увеличением в 8...10 раз токе покоя транзисторов предоконечного каскада и одновременным уменьшением во столько же раз сопротивлений резисторов в цепям затворов полевых транзисторов. Делать это, однако, не рекомендуется, так как при таком токе покоя, мощность, рассеиваемая транзисторами предоконечного каскада, возрастает примерно до 10 Вт. Лучше примириться с увеличением искажений, тем более что на высоких частотах они мало заметны.
Радикальное снижение искажений в области этих частот возможно при использовании в выходном каскаде комплементарных пар МДП-транзисторов.
5. Моделирование схемы в пакете Multisim 8
5.1 Подбор элементной базы и проверка работоспособности
Для моделирования схемы необходимо подобрать аналоги отечественным компонентам схемы (транзисторы, диоды, стабилитроны), т.к. данный пакет не содержит отечественную элементную базу.
Результат подбора аналогов элементов и их параметры приведены в таблице 1 и 2
Таблица 1
Номер по схеме | Отечественный элемент | Импортный аналог |
Транзисторы | ||
VT1, VT2, VT3 | КТ313Б | 2N3250A |
VT4, VT6 | КТ630Б | 2N2102 |
VT5, VT7 | КТ816Г | 2N5194 |
VT8, VT9 | КП904А | 2N7000 |
Диоды | ||
VD1 | Д814Г | 1N962B |
VD2, VD3, VD4,VD5 | КД223А | 1N5401 |
VD6, VD9 | КД103А | BAW62 |
Стабилитроны | ||
VD10, VD11 | КС211Е | BZX84-C10 |
Таблица 2
Транзисторы npn и pnp | КТ313Б (2N3250A) | КТ630Б (2N2102) | КТ816Г (2N5194) | Полевой транзистор | КП904А (2N700) |
IK MAX, mA | 35 | 1 | 3 | PMAX, мВт | 75 |
IK, И MAX, mA | 2 | 6 | UСИ MAX, Bт | 70 | |
UКЭRMAX (UКЭО ГР), В | 5 | 80 | 80 | UЗС MAX, Вт | 90 |
UКБО MAX, B | 6 | 120 | IC MAX, A | 16 | |
UЭБО MAX, B | 5 | 7 | 5 | IK MAX, A | 100 |
PK MAX(PMAX), мВт | 300 | 0,8 | 25 | SмА/В | 250..510 |
ТП MAX, c | 125 | 125 | 125 | CЗИ, пФ | 300 |
TMAX, c | 85 | 100 | КУР, дБ | 13 | |
h21Э(h21Э)(S21 ТИП) | 80…300 | 80…240 | 25 | UЗИ MAX, В | 30 |
UКЭ НАС, В | 0,5 | 0,3 | 0,6 | ||
IКБО(IКЭR), мкА | 0,5 | 1 | 0,1 | ||
fГР(fh21), МГц | 200 | 50 | 3 | ||
CК, пФ | 12 | 15 | 60 | ||
СЭ, пФ | 65 | 115 |
Подобные работы:
Модель тракта прослушивания гидроакустических сигналов
Модернизация блока управления аппарата искусственной вентиляции легких "Спирон–201"
Модернизация сети телекоммуникаций района АТС-38 г. Алматы
Модернизация системы видеонаблюдения центрального офиса коммерческого банка
Модернизация сотовой сети стандарта GSM с применением технологий GPRS и EDGE