Проблемы захоронения радиоактивных отходов в геологических формациях
Содержание
1. Введение.. 2
2.Радиоактивные отходы. Происхождение и классификация. 4
2.1 Происхождение радиоактивных отходов. 4
2.2 Классификация радиоактивных отходов. 5
3. Захоронение радиоактивных отходов. 7
3.1. Захоронение РАО в горных породах. 8
3.1.1 Основные типы и физико-химические особенности горных пород для захоронения ядерных отходов. 15
3.1.2 Выбор места захоронения радиоактивных отходов. 18
3.2 Глубокое геологическое захоронение РАО . 19
3.3 Приповерхностное захоронение. 20
3.4Плавление горной породы 21
3.5Прямое закачивание 22
3.6Другие способы захоронения РАО 23
3.6.1Удаление в море 23
3.6.2 Удаление под морское дно.. 23
3.6.3 Удаление в зоны подвижек. 24
3.6.4 Захоронение в ледниковые щиты.. 25
3.6.5 Удаление в космическое пространство.. 25
4. Радиоактивные отходы и отработавшее ядерное топливо в атомной энергетике России. 25
5. Проблемы системы обращения с РАО в России и возможные пути ее решения.. 26
5.1 Структура системы обращения с РАО в РФ.. 26
5.2 Предложения по изменению доктрины обращения с РАО.. 28
6. Заключение.. 29
7. Список использованной литературы: 30
1. Введение
Вторая половина ХХ века ознаменовалась резким обострением экологических проблем. Масштабы техногенной активности человечества в настоящее время уже сравнимы с геологическими процессами. К прежним типам загрязнений окружающей среды, получивших экстенсивное развитие, добавилась новая опасность радиоактивного заражения. Радиационная обстановка на Земле за последние 60-70 лет подверглась существенным изменениям: к началу Второй мировой войны во всех странах мира имелось около 10-12 г полученного в чистом виде естественного радиоактивного вещества- радия. В наши дни один ядерный реактор средней мощности производит 10 т искусственных радиоактивных веществ, большая часть которых, правда, относится к короткоживущим изотопам.Радиоактивные вещества и источники ионирующего излучения используются практически во всех отраслях промышленности, в здравоохранении, при проведении самых разнообразных научных исследований.
За последние полвека на Земле образовались десятки миллиардов кюри радиоактивных отходов, и эти цифры увеличиваются с каждым годом. Особенно острой проблема утилизации и захоронения РАО атомных электростанций становится в настоящее время, когда наступает время демонтажа большинства АЭС в мире (по данным МАГАТЭ, это более 65 реакторов АЭС и 260 реакторов, использующихся в научных целях). Несомненно, что самый значительный объем РАО образовался на территории нашей страны в результате реализации военных программ на протяжении более 50 лет. Во время создания и совершенствования ядерного оружия одной из главных задач была быстрая наработка ядерных делящихся материалов, дающих цепную реакцию. Такими материалами являются высокообогащенный уран и оружейный плутоний. На Земле образовались самые большие наземные и подземные хранилища РАО, представляющие огромную потенциальную опасность для биосферы на многие сотни лет.
http://zab.chita.ru/admin/pictures/424.jpgВопрос обращения с радиоактивными отходами предполагает оценку различных категорий и методов их хранения, а также разные требования в отношении защиты окружающей среды. Целью ликвидации является изоляция отходов от биосферы на чрезвычайно длительные периоды времени, обеспечение того, что остаточные радиоактивные вещества, достигающие биосферы, будут в незначительных концентрациях в сравнении, например, с естественным фоном радиоактивности, а также обеспечение уверенности в том, что риск при небрежном вмешательстве человека будет очень мал . Захоронение в геологическую среду, широко предлагается для достижения этих целей.
Однако,существует множество разнообразных предложений относительно способов захоронения радиоактивных отходов, например:
· Долговременное наземное хранилище,
· Глубокие скважины(на глубине несколько км),
· Плавление горной породы(предлагалось для отходов, выделяющих тепло)
· Прямое закачивание(подходит только для жидких отходов),
· Удаление в море,
· Удаление под дно океана,
· Удаление в зоны подвижек,
· Удаление в ледниковые щиты,
· Удаление в космос
Некоторые предложения еще только разрабатываются учеными разных стран мира, другие уже были запрещены международными соглашениями.Большинство ученых, исследующих данную проблему, признают наиболее рациональной возможность захоронения радиоактивных отходов в геологичекую среду.
Проблема РАО – составная часть «Повестки дня на XXI век»», принятой на Всемирной встрече на высшем уровне по проблемам Земли в Рио-де-Жанейро (1992) и «Программы действий по дальнейшему осуществлению “Повестки дня на ХХI век”», принятой Специальной сессией Генеральной Ассамблеи Организации Объединенных Наций (июнь 1997 г.). В последнем документе, в частности, намечена система мер по совершенствованию методов обращения с радиоактивными отходами, по расширению международного сотрудничества в этой области (обмен информацией и опытом, помощь и передача соответствующих технологий и др.), по ужесточению ответственности государств за обеспечение безопасного хранения и удаления РАО.
В свой работе я попробую проанализировать и дать оценку утилизации радиоактивных отходов в геологической среде, а также возможных поледствий такого захоронения.
2. Радиоактивные отходы.Происхождение и классификация.
2.1 Происхождение радиоактивных отходов.
К радиоактивным отходам относятся не подлежащие дальнейшему использованию материалы, растворы, газообразные среды, изделия, аппаратура, биологические объекты, грунт и т.п., в которых содержание радионуклидов превышает уровни, установленные нормативными актами. В категорию «РАО» может быть включено также отработавшее ядерное топливо (ОЯТ), если оно не подлежит последующей переработке с целью извлечения из него компонентов и после соответствующей выдержки направляется на захоронение. РАО подразделяются на высокоактивные отходы (ВАО), среднеактивные (САО) и низкоактивные (НАО). Деление отходов по категориям устанавливается нормативными актами.
Радиоактивные отходы представляют собой смесь стабильных химических элементов и радиоактивных осколочных и трансурановых радионуклидов. Осколочные элементы с номерами 35-47; 55-65 являются продуктами деления ядерного топлива. За 1 год работы большого энергетического реактора (при загрузке 100 т ядерного топлива c 5% урана-235) вырабатывается 10% (0.5 т) делящегося вещества и производится примерно 0.5 т осколочных элементов. В масштабах страны ежегодно только на энергетических реакторах АЭС вырабатывается 100 т осколочных элементов. (1)
Основными и наиболее опасными для биосферы элементами радиоактивных отходов являются Rb, Sr, Y, Zr, Mo, Ru, Rh, Pd, I, Cs, Ba, La....Dy и трансурановые элементы: Np, Pu, Am и Cm. Растворы радиоактивных отходов высокой удельной активности по составу представляют собой смеси азотнокислых солей с концентрацией азотной кислоты до 2,8 моль/литр, в них присутствуют добавки HF (до 0,06 моль/литр) и H2SO4 (до 0.1 моль/литр). Общее содержание солей конструкционных элементов и радионуклидов в растворах составляет приблизительно 10 мас%.Трансурановые элементы образуются в результате реакции нейтронного захвата. В ядерных реакторах топливо (обогащенный природный уран) в виде таблеток UO2 помещается в трубки из циркониевой стали (тепловыделяющий элемент - ТВЭЛ). Эти трубки располагаются в активной зоне реактора, между ними помещаются блоки замедлителя (графита), регулирующие стрежни (кадмиевые) и трубки охлаждения, по которым циркулирует теплоноситель - чаще всего, вода. Одна загрузка ТВЭЛов работает примерно 1-2 года.
Радиоактивные отходы образуются:
• при эксплуатации и снятии с эксплуатации предприятий ядерного топливного цикла (добыча и переработка радиоактивных руд, изготовление тепловыделяющих элементов, производство электроэнергии на АЭС, переработка отработавшего ядерного топлива);
• в процессе реализации военных программ по созданию ядерного оружия, консервации и ликвидации оборонных объектов и реабилитации территорий, загрязненных в результате деятельности предприятий по производству ядерных материалов;
• при эксплуатации и снятии с эксплуатации кораблей военно-морского и гражданского флотов с ядерными энергетическими установками и баз их обслуживания;
• при использовании изотопной продукции в народном хозяйстве и медицинских учреждениях;
• в результате проведения ядерных взрывов в интересах народного хозяйства, при добыче полезных ископаемых, при выполнении космических программ, а также при авариях на атомных объектах.( )
При использовании радиоактивных материалов в медицинских и других научно-исследовательских учреждениях образуется значительно меньшее количество РАО, чем в атомной отрасли промышленности и военно-промышленном комплексе – это несколько десятков кубических метров отходов в год. Однако применение радиоактивных материалов расширяется, а вместе с ним возрастает объем отходов.
2.2 Классификация радиоактивных отходов
РАО классифицируют по различным признакам (рис. 1): по агрегатному состоянию, по составу (виду) излучения, по времени жизни (периоду полураспада Т1/2), по удельной активности (интенсивности излучения). Однако, у используемой в России классификации РАО по удельной (объемной) активности есть свои недостатки и положительные стороны. К недостаткам можно отнести то, что в ней не учитывается период полураспада, радионуклидный и физико-химический состав отходов, а также наличие в них плутония и трансурановых элементов, хранение которых требует специальных жестких мер. Положительной стороной является то, что на всех этапах обращения с РАО включая хранение и захоронение главной задачей является предотвращение загрязнения окружающей среды и переоблучения населения, и разделение РАО в зависимости от уровня удельной (объемной) активности именно и определяется степенью их воздействия на окружающую среду и человека. На меру радиационной опасности влияет вид и энергия излучения (альфа-, бета-, гамма – излучатели), а также наличие химически токсичных соединений в отходах. Продолжительность изоляции от окружающей среды среднеактивных отходов составляет 100-300 лет, высокоактивных – 1000 и более лет, для плутония – десятки тысяч лет. Важно отметить, что РАО делятся в зависимости от периода полураспада радиоактивных элементов: на короткоживущие период полураспада меньше года; среднеживущие от года до ста лет и долгоживущие более ста лет.
Рис.1 Классификация радиоактивных отходов.
Среди РАО наиболее распространенными по агрегатному состоянию считаются жидкие и твердые. Для классификации жидких РАО был использован параметр удельной (объемной) активности таблица 1.Жидкими РАО считаются жидкости, в которых допустимая концентрация радионуклидов превышает концентрацию установленную для воды открытых водоемов. Ежегодно на АЭС образуется большое количество жидких радиоактивных отходов (ЖРО). В основном большинство ЖРО просто сливается в открытые водоемы, так как их радиоактивность считается безопасной для окружающей среды. Жидкие РАО образуются также на радиохимических предприятиях и исследовательских центрах.
Таблица 1. Классификация жидких радиоактивных отходов
Категории РАО | Удельная активность, Ки/л (Бк/кг) |
Низкоактивные | ниже 10-5 (ниже 3,7*105) |
Среднеактивные | 10-5 – 1 (3,7*105 - 3,7*1010) |
Высокоактивные | выше 1 (выше 3,7*1010) |
Из всех видов РАО жидкие наиболее распространены, так как в растворы переводят как вещество конструкционных материалов (нержавеющих сталей, циркониевых оболочек ТВЭЛов и т.п.), так и технологические элементы (соли щелочных металлов и др.). Большая часть жидких РАО образуется за счет атомной энергетики. Отработавшие свой ресурс ТВЭЛы, объединенные в единые конструкции - тепловыделяющие сборки, аккуратно извлекают и выдерживают в воде в специальных бассейнах-отстойниках для снижения активности за счет распада короткоживущих изотопов. За три года активность снижается примерно в тысячу раз. Затем ТВЭЛы отправляют на радиохимические заводы, где их измельчают механическими ножницами и растворяют в горячей 6-нормальной азотной кислоте. Образуется 10% раствор жидких высокоактивных отходов. Таких отходов производится порядка 1000 т в год по всей России (20 цистерн по 50 т.).
Для твердых РАО был использован вид доминирующего излучения и мощности экспозиционной дозы непосредственно на поверхности отходов таблица 2.
Таблица 2. Классификация твердых радиоактивных отходов
Категории РАО | Мощность экспозиционной дозы, Р/ч | Вид доминирующего излучения | ||
альфа-излучатели, Ки/кг | бета-излучатели, Ки/кг | Мощность дозы гамма-излучения (0,1м от поверхности), Гр/ч | ||
Низкоактивные | ниже 0,2 | 2*10-7 – 10-5 | 2*10-6 – 10-4 | 3*10-7 – 3*10-4 |
Среднеактивные | 0,2 – 2 | 10-5 – 10-2 | 10-4 – 10-1 | 3*10-4 – 10-2 |
Высокоактивные | выше 2 | выше 10-2 | выше 10-1 | выше 10-2 |
Твердые РАО — это та форма радиоактивных отходов, которая непосредственно подлежит хранению или захоронению. Существует 3 основных вида твердых отходов :
остатки урана или радия, не извлеченныме при переработке руд,
искусственные радионуклиды, возникшие при работе реакторов и ускорителей,
выработавшие ресурс, демонтированные реакторами, ускорителями, радиохимическим и лабораторным оборудованием.
Для классификации газообразных РАО также используется параметр удельной (объемной) активности таблица 3.
Таблица 3. Классификация газообразных радиоактивных отходов
Категории РАО | Объемная активность, Ки/м3 |
Низкоактивные | ниже 10-10 |
Среднеактивные | 10-10 - 10-6 |
Высокоактивные | выше 10-6 |
Газообразные РАО образуются в основном при работе АЭС, радиохимических заводов по регенерации топлива, а также при пожарах и других аварийных ситуациях на ядерных объектах.
Это радиоактивный изотопводорода 3Н (тритий), который не задерживается нержавеющей сталью оболочки твэлов, но поглощается (99 %) циркониевой оболочкой. Кроме того при делении ядерного топлива образуется радиогенный углерод, а также радионуклиды криптона и ксенона.
Инертные газы, в первую очередь 85Kr (T1/2 = 10,3 года), предполагают улавливать на предприятиях радиохимической промышленности, выделяя его из отходящих газов с помощью криогенной техники и низкотемпературной адсорбции. Газы с тритием окисляются до воды, а углекислый газ, в котором присутствует радиогенный углерод, химически связывается в карбонатах.
3. Захоронение радиоактивных отходов.
Проблема безопасного захоронения РАО является одной из тех проблем, от которых в значительной мере зависят масштабы и динамика развития ядерной энергетики. Генеральной задачей безопасного захоронения РАО является разработка таких способов их изоляции от биоцикла, которые позволят устранить негативные экологические последствия для человека и окружающей среды. Конечной целью заключительных этапов всех ядерных технологий является надежная изоляция РАО от биоцикла на весь период сохранения отходами радиотоксичности.
В настоящее время разрабатываются технологии иммобилизации РАО и исследуются различные способы их захоронения, основными критериями при выборе которого для широкого использования являются следующие: – минимизация затрат на реализацию мероприятий по обращению с РАО; – сокращение образующихся вторичных РАО.
За последние годы создан технологический задел для современной системы обращения с РАО. В ядерных странах имеется полный комплекс технологий, позволяющих эффективно и безопасно перерабатывать радиоактивные отходы, минимизируя их количество. В общем виде цепь технологических операций обращению с ЖРО может быть представлена в следующем виде : Однако нигде в мире не выбран метод окончательного захоронения РАО, технологический цикл обращения с РАО, не является замкнутым: oтвержденные ЖРО, так же как и ТРО, хранятся на специальных контролируемых площадках, создавая угрозу радиоэкологической обстановке мест хранения.
3.1. Захоронение РАО в горных породах
На сегодняшний день всеобще признано (в том числе и МАГАТЭ), что наиболее эффективным и безопасным решением проблемы окончательного захоронения РАО является их захоронение в могильниках на глубине не менее 300-500 м в глубинных геологических формациях с соблюдением принципа многобарьерной защиты и обязательным переводом ЖРО в отвержденное состояние. Опыт проведения подземных ядерных испытаний доказал, что при определенном выборе геологических структур не происходит утечки радионуклидов из подземного пространства в окружающую среду.
Таким образом, при решении проблемы обезвреживания радиоактивных отходов использование “опыта, накопленного природой”, прослеживается особенно наглядно. Недаром именно специалисты в области экспериментальной петрологии оказались едва ли не первыми, кто оказался готов решать возникшую проблему.
Они позволяют выделять из смеси элементов радиоактивных отходов отдельные группы, близкие по своим геохимическим характеристикам, а именно:
· щелочные и щелочноземельные элементы;
· галогениды;
· редкоземельные элементы;
· актиниды.
Для этих групп элементов можно попытаться найти породы и минералы, перспективные для их связывания.
Природные химические (и, даже, ядерные) реакторы, производящие токсичные вещества, - не новость в геологической истории Земли. В качестве примера можно привести месторождение Окло, где ~ 200 млн. лет назад в течение 500 тыс. лет на глубине ~ 3,5 км действовал природный реактор, прогревавший окружающие породы до 600°С. Сохранение большинства радиоизотопов на месте их образования обеспечивалось их изоморфным вхождением в уранинит. Растворению же последнего, препятствовала восстановительная обстановка. Тем не менее около 3 млрд. лет назад на планете зародилась, успешно сосуществует рядом с очень опасными веществами и развивается жизнь.
Рассмотрим основные пути саморегуляции природы с точки зрения их использования в качестве методов обезвреживания отходов техногенной деятельности человечества. Намечаются четыре таких принципа.
а) Изоляция - вредные вещества концентрируются в контейнерах и защищаются специальными барьерными веществами. Природным аналогом контейнеров могут служить слои водоупоров. Однако, это - не слишком надежный способ обезвреживания отходов: при хранении в изолированном объеме опасные вещества сохраняют свои свойства и при нарушении защитного слоя могут вырываться в биосферу, убивая все живое. В природе разрыв таких слоев приводит к выбросам ядовитых газов (вулканическая активность, сопровождающаяся взрывами и выбросами газов, раскаленного пепла, выбросы сероводорода при бурении скважин на газ - конденсат). При хранении опасных веществ в специальных хранилищах также иногда происходит нарушение изолирующих оболочек с катастрофическими последствиями. Печальный пример из техногенной деятельности человека - челябинский выброс радиоактивных отходов в 1957 году из-за разрушения контейнеров - хранилищ. Изоляция применяется для временного хранения радиоактивных отходов; в будущем необходимо реализовать принцип многобарьерной защиты при их захоронении, одним из составных элементов этой защиты будет слой изоляции.
б) Рассеяние - разбавление вредных веществ до уровня, безопасного для биосферы. В природе действует закон всеобщего рассеяния элементов В.И.Вернадского. Как правило, чем меньше кларк, тем опаснее для жизни элемент или его соединения (рений, свинец, кадмий). Чем больше кларк элемента, тем он безопаснее - биосфера к нему "привыкла". Принцип рассеяния широко используется при сбросе техногенных вредных веществ в реки, озера, моря и океаны, а также в атмосферу - через дымовые трубы. Рассеяние использовать можно, но видимо, только для тех соединений, время жизни которых в природных условиях невелико, и которые не смогут дать вредных продуктов распада. Кроме того, их не должно быть много. Так, например, СО2 - вообще говоря, не вредное, а иногда даже полезное соединение. Однако, возрастание концентрации углекислоты во всей атмосфере ведет к парниковому эффекту и тепловому загрязнению. Особенно страшную опасность могут представлять вещества (например, плутоний), получаемые искусственно в больших количествах. Рассеяние до сих пор применяется для удаления отходов малой активности и, исходя из экономической целесообразности, будет еще долго оставаться одним из методов для их обезвреживания. Однако в целом в настоящее время возможности рассеивания в основном исчерпаны и надо искать другие принципы.
в) Существование вредных веществ в природе в химически устойчивых формах. Минералы в земной коре сохраняются сотни миллионов лет. Распространенные акцессорные минералы (циркон, сфен и другие титано- и цирконосиликаты, апатит, монацит и другие фосфаты и т.д.) обладают большой изоморфной емкостью по отношению к многим тяжелым и радиоактивным элементам и устойчивы практически во всем интервале условий петрогенезиса. Имеются данные о том, что цирконы из россыпей, испытавшие вместе с вмещающей породой процессы высокотемпературного метаморфизма и даже гранитообразования, сохраняли свой первичный состав.
г) Минералы, в кристаллических решетках которых находятся подлежащие обезвреживанию элементы, в природных условиях находятся в равновесии с окружающей средой. Реконструкция условий древних процессов, метаморфизма и магматизма, имевших место много миллионов лет назад, возможна благодаря тому, что в кристаллических горных породах на протяжении длительного по геологическим масштабам времени сохраняются особенности состава образовавшихся при этих условиях и находившихся между собой в термодинамическом равновесии минералов.
Описанные выше принципы (особенно последние два) находят применение при обезвреживании радиоактивных отходов.
Существующие разработки МАГАТЭ рекомендуют захоронение отвержденных радиоактивных отходов в стабильных блоках земной коры. Матрицы должны минимально взаимодействовать с вмещающей породой и не растворяться в поровых и трещинных растворах. Требования, которым должны удовлетворять матричные материалы для связывания осколочных радионуклидов и малых актинидов, можно сформулировать следующим образом:
· Способность матрицы связывать и удерживать в виде твердых растворов возможно большее число радионуклидов и продуктов их распада в течение длительного (по геологическим масштабам) времени.
· Быть устойчивым материалом по отношению к процессам физико-химического выветривания в условиях захоронения (длительного хранения).
· Обладать термической устойчивостью при высоких содержаниях радионуклидов.
· Обладать комплексом физико-механических свойств, которые необходимо иметь любому матричному материалу для обеспечения процессов транспортировки, захоронения и пр.:
o механической прочностью,
o высокой теплопроводностью,
o малыми коэффициентами теплового расширения,
o устойчивостью к радиационным повреждениям.
· Иметь простую технологическую схему производства
· Производиться из исходного сырья, сравнительно низкой стоимости.
Современные матричные материалы подразделяются по своему фазовому состоянию на стеклообразные (боросиликатные и алюмофосфатные стекла) и кристаллические - как полиминеральные (синроки) так и мономинеральные (цирконий-фосфаты, титанаты, цирконаты, алюмосиликаты и т.п.).
Традиционно для иммобилизации радионуклидов применяли стекольные матрицы (боросиликатные и алюмофосфатные по составу). Эти стекла по своим свойствам близки к алюмосиликатным, только в первом случае алюминий заменен бором, а во втором - кремний фосфором. Эти замены вызваны необходимостью снижения температуры плавления расплавов и уменьшения энергоемкости технологии. В стекольных матрицах достаточно надежно удерживается 10-13мас.% элементов радиоактивных отходов. В конце 70-х годов были разработаны первые кристаллические матричные материалы - синтетические горные породы (синрок). Эти материалы состоят из смеси минералов - твердых растворов на основе титанатов и цирконатов и гораздо более устойчивы к процессам выщелачивания, чем стекольные матрицы. Стоит отметить, что наилучшие матричные материалы - синроки - были предложены петрологами (Рингвуд и др.). Способы остекловывания радиоактивных отходов, используемые в странах с развитой ядерной энергетикой (США, Франция, Германия), не отвечают требованиям их длительного безопасного хранения в связи со спецификой стекла как метастабильной фазы. Как показали исследования, даже наиболее устойчивые к процессам физико-химического выветривания алюмофосфатные стекла, оказываются малостабильными при условиях захоронения в земной коре. Что же касается боросиликатных стекол, то согласно экспериментальным исследованиям, в гидротермальных условиях при 350оС и 1 кбар они полностью кристаллизуются с выносом элементов радиоактивных отходов в раствор. Тем не менее, стеклование радиоактивных отходов с последующим хранением стекольных матриц в специальных хранилищах является пока единственным методом промышленного обезвреживания радионуклидов.
Рассмотрим свойства имеющихся матричных материалов. В таблице 4 представлена их краткая характеристика.
Таблица 4. Сравнительные характеристики матричных материалов
Свойства | (B,Si)-стекла | (Al,P)-стекла | Синрок | NZP1) | Глины | Цео-литы |
Способность фиксировать РН2) и продукты их распада | + | + | + | + | - | + |
Устойчивость к выщелачиванию | + | + | ++ | ++ | - | - |
Термоустойчивость | + | + | ++ | ++ | - | - |
Механическая прочность | + | + | ++ | ? | - | + |
Стойкость к радиационным повреждениям | ++ | ++ | + | + | + | + |
Устойчивость при размещении в породах земной коры | - | - | ++ | ? | + | - |
Технология производства 3) | + | - | - | ? | + | + |
Стоимость исходного сырья 4) | + | + | - | - | ++ | ++ |
Характеристики свойств матричных материалов: “++” - очень хорошие; “+” - хорошие; “-” - плохие.
1) NZP - фазы фосфатов циркония с общей формулой (IAxIIByIIIRzIVMvVCw)(PO4)m; где IAx ..... VCw - элементы I-V групп таблицы Менделеева;
2) РН - радионуклиды;
3) Технология производства: “+” - простая; “-” - сложная;
4) Исходное сырье: “++” - дешевое; “+” - среднее; “-” - дорогое.
Из анализа таблицы следует, что матричных материалов, удовлетворяющих всем сформулированным требованиям нет. Стекла и кристаллические матрицы (синрок и, возможно, насикон) являются наиболее приемлемыми по комплексу физико-химических и механических свойств, однако, высокая стоимость как производства, так и исходных материалов, относительная сложность технологической схемы ограничивают возможности широкого применения синрока для фиксации радионуклидов. Кроме того, как уже говорилось, устойчивость стекол недостаточна для захоронения в условиях земной коры без создания дополнительных защитных барьеров.
Усилия петрологов и геохимиков - экспериментаторов сосредоточены на проблемах, связанных с поиском новых модификаций кристаллических матричных материалов, более пригодных для захоронения радиоактивных отходов в породах земной коры.
Прежде всего, в качестве потенциальных матриц - фиксаторов радиоактивных отходов были выдвинуты твердые растворы минералов. Идея о целесообразности применения твердых растворов минералов в качестве матриц для фиксации элементов радиоактивных отходов была подтверждена результатами широкого петролого - геохимического анализа геологических объектов. Известно, что изоморфные замещения в минералах осуществляются, главным образом, по группам элементов таблицы Д.И.Менделеева:
в полевых шпатах: Na K Rb; Ca Sr Ba; Na Ca (Sr, Ba);
в оливинах: Mn Fe Co;
в фосфатах: Y La...Lu и т.п.
Задача состоит в том, чтобы среди природных минералов с высокой изоморфной емкостью подобрать твердые растворы, которые способны
концентрировать в себе указанные выше группы элементов радиоактивных отходов. В таблице 5 показаны некоторые минералы - потенциальные матрицы для размещения в них радионуклидов. В качестве матричных могут применяться как главные, так и акцессорные минералы.
Таблица 5. Минералы - потенциальные концентраторы элементов радиоактивных отходов.
Минерал | Формула минерала | Элементы РАО, изоморфно фиксируемые в минералах |
Главные породообразующие минералы | ||
Полевой шпат | (Na,K,Ca)(Al,Si)4O8 | Ge, Rb, Sr, Ag, Cs, Ba, La...Eu, Tl |
Нефелин | (Na,K)AlSiO4 | Na, K, Rb, Cs, Ge |
Содалит | Na8Al6Si6O24Cl2 | Na, K, Rb, Cs?, Ge, Br, I, Mo |
Оливин | (Fe,Mg)2SiO4 | Fe, Co, Ni, Ge |
Пироксен | (Fe,Mg)2Si2O6 | Na, Al, Ti, Cr, Fe, Ni |
Цеолиты | (Na,Ca)((Al,Si)nOm)k*xH2O | Co, Ni, Rb, Sr, Cs, Ba |
Акцессорные минералы | ||
Перовскит | (Ce,Na,Ca)2(Ti,Nb)2O6 | Sr, Y, Zr, Ba, La...Dy, Th, U |
Апатит | (Ca,REE)5(PO4)3(F,OH) | Y, La....Dy, I(?) |
Монацит | (REE)PO4 | Y, La...Dy, Th |
Сфен | (Ca,REE)TiSiO5 | Mn,Fe,Co?,Ni,Sr,Y,Zr,Ba,La...Dy |
Цирконолит | CaZrTi2O7 | Sr, Y, Zr, La...Dy, Zr, Th, U |
Циркон | ZrSiO4 | Y, La...Dy, Zr, Th, U |
Список минералов таблицы 5 может быть существенно дополнен. По соответствию геохимических спектров для иммобилизации радионуклидов наиболее подходят такие минералы, как апатит и сфен, а вот в циркон концентрируются в основном тяжелые редкоземельные элементы.
Для реализации принципа "подобное хранить в подобном" удобнее всего использовать минералы. Щелочные и щелочноземельные элементы можно размещать в минералах группы каркасных алюмосиликатов, а радионуклиды группы редкоземельных элементов и актинидов - в акцессорных минералах.
Указанные минералы распространены в различных типах магматических и метаморфических пород. Поэтому сейчас можно решать конкретную задачу о выборе минералов - концентраторов элементов, специфичных к породам уже имеющихся полигонов, предназначенных для захоронения радиоактивных отходов. Так, например, для полигонов комбината "Маяк" (вулканогенно-осадочные толщи, порфириты) в качестве матричных материалов можно использовать полевые шпаты, пироксены и акцессорные минералы (циркон, сфен, фосфаты и др.).
Для создания и прогноза поведения минеральных матричных материалов в условиях длительного нахождения в породах необходимо уметь рассчитывать реакции в системе матрица - раствор - вмещающая порода, для чего необходимо знать их термодинамические свойства. В породах почти все минералы являются твердыми растворами, среди них наиболее распространены каркасные алюмосиликаты. Они слагают около 60% объема земной коры, всегда привлекали внимание и служили объектами изучения для геохимиков и петрологов.
Надежной основой термодинамических моделей может служить только экспериментальное изучение равновесий минералов - твердых растворов.
Оценка устойчивости матриц для размещения радиоактивных отходов к выщелачиванию также представляет собой работу, которую квалифицированно выполняют экспериментаторы петрологи и геохимики. Существует методика теста МАГАТЭ МСС-1 при 90оС, в дистиллированной воде. Определенные по ней скорости выщелачивания минеральных матриц с увеличением продолжительности опытов снижаются (в отличие от стекольных матриц, в которых наблюдается постоянство скоростей выщелачивания). Это объясняется тем, что в минералах, после выноса элементов с поверхности образца, скорости выщелачивания определяются внутрикристаллической диффузией элементов, которая очень низка при 90оС. Поэтому происходит резкое снижение скоростей выщелачивания. Стекла же при воздействии воды непрерывно перерабатываются, кристаллизуются, и поэтому зона переработки смещается в глубину.
Данные опытов показали, что скорости выщелачивания элементов из минералов различаются. Процессы выщелачивания, как правило, идут инконгруэнтно. Если рассматривать предельные, самые низкие скорости выщелачивания (достигаемые за 50 - 78 суток), то по увеличению скорости выщелачивания различных оксидов намечается ряд: Al Na (Ca) Si.
Скорости выщелачивания для отдельных оксидов возрастают в следующих рядах минералов:
для SiО2: ортоклаз скаполит нефелинлабрадор содалит
0,0080,140 (г/м2× сут)
для Na2О:лабрадор скаполит нефелин содалит;
0,004 0,110 (г/м2× сут) для CaО:апатит скаполит лабрадор;
0,0060,013 (г/м2× сут)
Кальций и натрий занимают в ми