Аккумулирование радионуклидов растениями лесных фитоценозов

РЕФЕРАТ

курсовой работы

«АККУМУЛИРОВАНИЕ РАДИОНУКЛИДОВ РАСТЕНИЯМИ ЛЕСНЫХ ФИТОЦЕНОЗОВ»

ОБЪЕМ РАБОТЫ: общий объем работы составляет 30 печатных страниц, содержит 4 таблицы, список использованных источников составляет 11 наименований.

Работа состоит из введения, теоретических частей, заключения, списка использованных источников.

КЛЮЧЕВЫЕ СЛОВА: АККУМУЛИРОВАНИЕ, РАДИОНУКЛИДЫ, ФИТОЦЕНОЗЫ, ИЗЛУЧЕНИЕ, РАСТИТЕЛЬНОСТЬ.

ОБЪЕКТ ИССЛЕДОВАНИЯ: растительные сообщества как аккумуляторы радионуклидов.

ЦЕЛЬ РАБОТЫ: изучение аккумулирования растительностью радионуклидов в зонах радиоактивного загрязнения.

МЕТОДЫ ИССЛЕДОВАНИЯ. Исходными данными для выполнения исследований явилась специальная научная литература, всемирная сеть Интернет.

РЕЗУЛЬТАТЫ: изучены особенности аккумулирования радионуклидов растительными сообществами в зонах радиоактивного загрязнения.

АКТУАЛЬНОСТЬ выбранной темы курсовой работы обусловлена тем, что в настоящее время важнейшая проблема сельского хозяйства в условиях загрязнения почвы радиоактивными элементами – максимально возможное снижение поступления этих веществ в растениеводческую продукцию и предотвращение накопление их в организмах сельскохозяйственных животных..
СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 4

ГЛАВА 1 НАКОПЛЕНИЕ РАДИОНУКЛИДОВ.. 6

1.1 Источники радиоактивного загрязнения. 6

1.2 Особенности аккумуляции радионуклидов растительностью.. 8

1.3 Накопление радионуклидов в почвах и растениях. 11

1.4 Пути миграции радионуклидов в окружающей среде. 15

Глава 2 Особенности аккумуляции радионуклидов различными фитоценозами.. 18

2.1 Аккумуляция радионуклидов растениями лесных фитоценозов. 18

2.2 Особенности накопления радионуклидов растениями живого. 22

напочвенного покрова в дубравах. 22

2.3 Миграция радионуклидов в сеяные луговые травы.. 25

2.4 Влияние внешнего облучения и поглощенных радионуклидов. 33

на жизнедеятельность растений. 33

Заключение. 2

СПИСОК ИСПОЛЬЗОВАННОЙ ЛитературЫ.. 5


ВВЕДЕНИЕ

В настоящее время и в перспективе особо остро встаёт проблема эколо­гической безопасности окружающей среды, экологически безопасного природопользования при возрастающих антропогенных нагрузках.

Загрязнение системы “почва – растения – вода” различными химическими веществами, а главным образом твердыми, жидкими и газообразными отходами промышленности, продуктами топлива и т.д. приводит к изменению химического состава почв.

Техногенные выбросы радионуклидов в природную среду в ряде районов земного шара значительно превышают природные нормы.

До недавнего времени в качестве важнейших загрязняющих веществ рассматривались, главным образом, пыль, угарный и углекислый газы, оксиды серы и азота, углеводороды. Радионуклиды рассматривались в меньшей степени. В настоящее время интерес к загрязнению радиоактивными веществами вырос, в связи с факторами появления острых токсичных эффектов, вызванных загрязнением стронцием и цезием.

Чернобыльская катастрофа повлияла на экологическую ситуацию во многих агроэкосистемах Беларуси радиоактивное загрязнение охватило значительные площади: 411 тыс. га (плот­ность загрязнения по 137Cs 5—15 К.и/км2). 216 тыс. га (15— 40 Ки/км2)' 28,3 тыс. га (40—80 Ки/км2), 4,4 тыс. га (80 Ки/км2). Долевое участие лугов и пастбищ в этой градации — соответ­ственно 156,2; 87,8; 12,1; 2,0 тыс. га. Радионуклиды по цепочке “почва – растение – животное” попадают в организм человека, накапливаются и оказывают не благоприятное воздействие на здоровье человека.

Важнейшая проблема сельского хозяйства в условиях загрязнения почвы радиоактивными элементами – максимально возможное снижение поступления этих веществ в растениеводческую продукцию и предотвращение накопление их в организмах сельскохозяйственных животных. Решение этой задачи связано с комплексом мероприятий, которые необходимо проводить в сельском хозяйстве. Основание для проведения данных мероприятий является увеличение заболеваемости и смертности, врожденных уродств и населения, проживающего на загрязнённых территориях.( 1)


ГЛАВА 1 НАКОПЛЕНИЕ РАДИОНУКЛИДОВ

1.1 Источники радиоактивного загрязнения

Развитие жизни на Земле всегда происходило в присутствии радиационного фона окружающей среды. Радиоактивное излучение определяется естественным радиационным фоном и искусственным. Естественный радиационный фон – представляет собой ионизирующее излучение от природных источников космического и земного происхождения, действующих на человека на поверхности земли. Космические лучи представляют собой поток частиц (протонов, альфа-частиц, тяжёлых ядер) и жёсткого гамма-излучения (это так называемое первичное космическое излучение). При взаимодействии его с атомами и молекулами атмосферы возникает вторичное космическое излучение, состоящее из мезонов и электронов.

Естественные радиоактивные элементы условно можно разделить на три группы:

1. изотопы радиоактивных семейств урана, тория и актиноурана;

2. не связанные с первой группой радиоактивные элементы – калий - 40, кальций – 48, рубидий – 87 и др.;

3. радиоактивные изотопы, возникающие под действием космического излучения – углерод – 14 и тритии.

Технически изменённый радиационный фон представляет собой ионизирующее излучение от природных источников, претерпевших определённые изменения в результате деятельности человека. Например, поступление радионуклидов в биосферу вместе с извлечёнными на поверхность земли из недр полезными ископаемыми (главным образом минеральными удобрениями), в результате сгорания органического топлива, излучения в помещениях, построенных из материалов, содержащих естественные радионуклиды, а также облучения за счёт полётов на современных самолётах.

Излучение, обусловленное рассеянными в биосфере искусственными радионуклидами, представляет собой искусственный радиационный фон (аварии на АЭС, отходы предприятий ядерной энергетики, использование искусственных ионизирующих излучений в медицине, народном хозяйстве).

Радиоактивное загрязнение природных средств в настоящее время обусловлено следующими источниками:

- глобально распределёнными долгоживущими радиоактивными изотопами – продуктами испытаний ядерного оружия, проводивших в атмосфере и под землёй;

- выбросом радиоактивных веществ из 4-го блока Чернобыльской АЭС в апреле – мае 1986 года;

- плановыми и аварийными выбросами радиоактивных веществ в окружающую среду от предприятий атомной промышленности;

- выбросами в атмосферу и сбросами в водные системы радиоактивных веществ с действующих АЭС в процессе их нормальной эксплуатации;

- привнесенной радиоактивностью (твёрдые радиоактивные отходы и радиоактивные источники).

Атомная энергетика вносит весьма незначительный вклад в изменение радиационного фона окружающей среды при нормальной работе ядерных установок. АЭС является лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Отработанное в АЭС ядерное топливо иногда подвергается вторичной обработке. Заканчивается процесс, как правило, захоронением радиоактивных отходов. (2)

Но в результате аварий на АЭС в окружающую среду могут попасть большое количество радионуклидов. Возможны аварии с локальными загрязнения только технологических помещений. Также случаются аварии, которые сопровождаются выбросом в окружающие среду радиоактивных веществ в количествах, превышающие установленные пределы. Большую опасность при этом имеют выбросы в атмосферу. Аварийный выброс в водную среду, по мнению специалистов, менее вероятное событие и будет характеризоваться более низкими уровнями воздействия.

Также большое значение как источника радиации имеют ядерные взрывы. При испытаниях ядерного оружия в атмосфере часть радиоактивного материала выпадает неподалеку от места испытания, какая-то часть задерживается в нижнем слое атмосферы, подхватывается ветром и переносится на большие расстояния. Находясь в воздухе около месяца, радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако, большая часть радиоактивного материала выбрасывается в атмосферу (на высоту 10-15 км), где он остаётся многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара.

В настоящее время большой вклад в дозу получаемую человеком вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Также проблемы могут возникать при не правильной транспортировке радиоактивных отходов на комбинат по переработке этих отходов, хранении жидких и твёрдых радиоактивных отходов.

Таким образом, из всего выше сказанного можно сделать вывод, что в изменении радиационного фона окружающей среды большой вклад вносят АЭС, ядерные взрывы и радиоактивные отходы.

1.2 Особенности аккумуляции радионуклидов растительностью

Между плотностью загрязнения почв радионуклидами природно-растительных комплексов и удельной радиоактивностью растений существует прямая зависимость. Например, растения в 1990 г. имели следующую удель­ную радиоактивность: хвоя сосны—1,8-10-7 Ки/кг, черника — 1,2- К)-7, мох Шребера— 1,1-КН Ки/кг, ХЮ 6 и 2,9-10-6 Ки/кг соответственно. Плотность загрязнения почвы радионуклидами гамма-спектра на этих пробах была равна 7,0 и 19,9 Ки/км2.

На луговых пробных площадях, как и в лесных фитоценозах, аналогичная закономерность соблюдалась только в идентичных типах луга, характеризующихся сходными свойствами почв. Так, пойма р. Сож щучка дер­нистая имела удельную радиоактивность 4,3-10-8 Ки/кг, осока пузырчатая—1,4-10-7, клевер луговой — 5,5-Ю-8 Ки/кг. Пока­затели удельной радиоактивности аналогичных растений на ПП 20 (Ветковский район, пойма р. Беседь) были значительно. Плотность загрязне­ния почв радионуклидами на этих пробных площадях была равна соответственно 4,2 и 17,1 Ки/км2.

Растения живого напочвенного покрова аккумулировали эти радионуклиды по-разному: по аккумуляции стронция-90 выде­ляется овсяница овечья (в 10 раз интенсивнее цезия-137), а так­же лишайник олений мох (в 6 раз). В растениях в больших количествах обнаружены изотопы церия, празеодима и рутения, хотя они и не относятся к биогенным элементам. Их накопление соизмеримо с аккумуляцией стронция-90 и цезия-137. По акку­муляции изотопов плутония в растениях лесных фитоценозов, особенно сосняков, выделяется живой напочвенный покров, ко­торый концентрирует эти радионуклиды на 1—2 порядка боль­ше, чем сосна. Н^ луговых пробах подавляющее количество видов концентрирует цезий-137, в меньшей степени — изотопы стронция-90.

По изотопному составу радионуклидов, содержащихся в при­родно-растительных комплексах, можно проследить динамику общего содержания гамма-излучаюших радионуклидов в расте­ниях. С момента аварии удельная радиоактивность раститель­ности непрерывно падала.

Значительные колебания удельной радиоактивности отмечаются в самой близ­кой к аварийному реактору точке д. Масаны. Это связано с распадом короткоживущих изотопов — церия, празеодима и рутения, а также цезия-134.

В настоящее время радиоактивность почв и растений опре­деляется в основном радиоизотопами цезия, стронция и плу­тония.

Следует подчеркнуть, что с течением времени в почвах уменьшается подвижность цезия-137, а стронция-90 возрастает. Это от­ражается на поступлении данных радионуклидов в растения. Очевидно, что поступление цезия-137 в растения за 5 лет сокра­тилось в 5—10 раз, а стронция-90 возросло в такой же степени. Это обстоятельство следует учитывать при использовании рас­тительных ресурсов в зонах радиоактивного загрязнения.

Для практики лесного хозяйства очень важны сведения о за­кономерностях распределения радионуклидов по органам расте­ний. Установлено, что радионуклиды больше всего скапливаются в хвоё (листьях), затем в коре, ветвях, меньше всего их в Дре­весине.

Следует задуматься над тем, что при использовании «чи­стой» древесины мы получаем большую массу отходов с высо­кой радиоактивностью, которые неизвестно куда девать — то ли сжигать, то ли подвергать захоронению. Однако отходы — цен­ное сырье, его нельзя терять, это неэкономично. Мы рекомен­дуем воздерживаться от эксплуатации таких насаждений в ближайшие 30—60 лет до понижения радиоактивности органов древесных пород до приемлемого уровня за счет естественного распада радионуклидов. (5)

В лесных фитоценозах картина несколько иная. Из напочвен­ного покрова в почву возвращается примерно 50% радионук­лидов, а из древесного яруса за счет опада хвои, веток, шишек, коры в почву поступает около 5% радиоизотопов, или 0,1 Ки/км2. Общее поступление (возврат) радионуклидов в почву составляет (с учетом живого напочвенного покрова) 0,46 Ки/км2.

Таким образом, живой напочвенный покров, особенно травянистые растения, принимает более активное участие в круго­вороте радионуклидов в природно-растительных комплексах. В результате изучения круговорота радионуклидов в природно-растительных комплексах можно составить схему распреде­ления радионуклидов между компонентами биогеоценоза. Наибольшей удельной радиоактивностью обладает нижний ярус фитоценоза (мхи, лишайники, грибы), затем идут травянистые виды, кустарнички, подлесок и подрост. Наименьшая удельная радиоактивность характерна для древесного— верхнего — яру­са фитоценоза. Это связано с особенностями биологии и строе­ния растений. В большем количестве радионуклиды накапли­ваются в тех органах и тканях растений, в которых происходит интенсивный обмен веществ и относительно высокий процент белка. В одревесневевших органах и тканях, играющих проводя­щую роль, радионуклиды накапливаются в меньших количе­ствах. В связи с этим сильнейшими биоконцентратами радио­нуклидов являются шляпочные грибы.

1.3 Накопление радионуклидов в почвах и растениях

Значительная часть радионуклидов находится в почве, как на поверхности, так и в нижних слоях, при этом их миграция во многом зависит от типа почвы, её гранулометрического состава, водно-физических и агрохимических свойств.

Основными радионуклидами, определяющими характер загрязнения, в нашей области является цезий – 137 и стронция – 90, которые по разному сортируются почвой. Основной механизм закрепления стронция в почве – ионный обмен, цезия – 137 обменной формой либо по типу ионообменной сорбции на внутренней поверхности частиц почвы.

Поглощение почвой стронция – 90 меньше цезия – 137, а следовательно, он является более подвижным радионуклидом.

В момент выброса цезия – 137 в окружающие среду, радионуклид изначально находится в хорошо растворимом состоянии (парогазовая фаза, мелкодисперсные частицы и т.д.)

В этих случаях поступления в почву цезий – 137 легко доступен для усвоения растениями. В дальнейшем радионуклид может включаться в различные реакции в почве и подвижность его снижается, увеличивается прочность закрепления, радионуклид “стареет”, а такое “старение” представляет комплекс почвенных кристаллохимических реакций с возможным вхождением радионуклида в кристаллическую структуру вторичных глинистых минералов.

Механизм закрепления радиоактивных изотопов в почве, их сорбция имеет большое значение, так как сорбция определяет миграционные качества радиоизотопов, интенсивность поглощения их почвами, а, следовательно, и способность проникать их в корни растений. Сорбция радиоизотопов зависит от многих факторов и одним из основных является механический и минералогический состав почвы тяжёлыми по гранулометрическому составу почвами поглощённые радионуклиды, особенно цезий – 137, закрепляются сильнее, чем лёгкими и с уменьшением размера механических фракций почвы прочность закрепления ими стронция – 90 и цезия – 137 повышается. Наиболее прочно закрепляются радионуклиды илистой фракцией почвы.

Большему удержанию радиоизотопов в почве способствует наличие в ней химических элементов, близких по химическим свойствам к этим изотопам. Так, кальций – химический элемент, близкий по своим свойствам стронцию – 90 и внесение извести, особенно на почвы с высокой кислотностью, ведёт к увеличению поглотительной способности стронция – 90 и к уменьшению его миграции. Калий схож по своим химическим свойствам с цезием – 137. Калий, как неизотопный аналог цезия находится в почве в макроколичествах, в то время как цезий – в ультромикроконцентрациях. Вследствие этого в почвенном растворе происходит сильное разбавление микроколичеств цезия – 137 ионами калия, и при поглощении их корневыми системами растений отмечается конкуренция за место сорбции на поверхности корней. Поэтому при поступлении этих элементов из почвы в растениях наблюдается антагонизм ионов цезия и калия.

Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количество осадков).

Установлено, что стронций – 90 попавший на поверхность почвы, вымывается дождём в самые нижние слои. Следует заметить, что миграция радионуклидов в почвах протекает медленно и их основная часть находится в слое 0 – 5 см.

Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической особенности растений. На кислых почвах радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых. Снижение кислотности почвы, как правило, способствует уменьшению размеров перехода радионуклидов в растения. Так, в зависимости от свойства почвы содержание стронция – 90 и цезия – 137 в растениях может изменяться в среднем в 10 – 15 раз.

А межвидовые различия сельскохозяйственных культур в накопление этих радионуклидов наблюдается зернобобовыми культурами. Например, стронций – 90 и цезий – 137, в 2 – 6 раз поглощается интенсивное зернобобовыми культурами, чем злаковыми.

Поступление стронция – 90 и цезия – 137 в травистой на лугах и пастбищах определяется характером распределения в почвенном профиле.

На целинных участка, естественных лугах, цезий находится в слое 0-5 см, за прошедшие годы после аварии не отмечена значительная вертикальная миграция его по профилю почвы. На перепаханных землях цезий – 137 находится в пахотном слое.

Пойменная растительность в большей степени накапливает цезий – 137, чем суходольная. Так при загрязнении поймы 2,4 Ки/км2 в траве было обнаружено Ки/кг сухой массы, а на суходольной при загрязнении 3,8 Ки/км2 в траве содержалось Ки /кг.

Накопление радионуклидов травянистыми растениями зависит от особенностей строения дернины. На злаковом лугу с мощной плотной дерниной содержание цезия – 137 в фитомассе в 3 – 4 раза выше, чем на разнотравном с рыхлой маломощной дерниной.

Культуры с низким содержанием калия меньше накапливают цезия. Злаковые травы накапливают меньше цезия по сравнению с бобовыми. Растения сравнительно устойчивы к радиоактивному воздействию, но они могут накапливать такое количество радионуклидов, что становятся не пригодными к употреблению в пищу человека и на корм скоту.

Поступление цезия – 137 в растения зависит от типа почвы. По степени уменьшения накопления цезия в урожае растения почвы можно расположить в такой последовательности: дерново-подзолистые супесчаные, дерново-подзолистые суглинистые, серая лесная, чернозёмы и т.д. Накопление радионуклидов в урожае зависит не только от типа почвы, но и от биологической особенности растений.

Отмечается, что кальциелюбивые растения обычно поглощают больше стронция – 90,чем растения бедные кальцием. Больше всего накапливают стронций – 90 бобовые культуры, меньше корнеплоды и клубнеплоды, и ещё меньше злаковые.

Накопление радионуклидов в растении зависит от содержания в почве элементов питания.

Таким образом, миграция радионуклидов во многом зависит от типа почвы, её механического состава, водно-физических и агрохимических свойств. Так на сорбцию радиоизотопов влияют многие факторы, и одним из основных являются механический и минералогический состав почвы. Тяжёлыми по механическому составу почвами поглощённые радионуклиды, особенно цезий – 137, закрепляются сильнее, чем лёгкими. Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количества осадков). (5)


1.4 Пути миграции радионуклидов в окружающей среде

Радиоактивные вещества попадающие в атмосферу, в конечном счёте концентрируются в почве. Через несколько лет после радиоактивных выпадений на земную поверхность поступления радионуклидов в растения из почвы становится основным путём попадания их в пищу человека и корм животным. При аварийных ситуациях, как показала авария на Чернобыльской АЭС, уже на второй год после выпадений основной путь попадания радиоактивных веществ в пищевые цепи - поступление радионуклидов из почвы в растения.

Радиоактивные вещества, попадающие в почву, могут из неё частично вымываться и попадать в грунтовые воды. Однако почва довольно прочно удерживает попадающие в неё радиоактивные вещества. Поглощение радионуклидов обуславливает очень длительное (в течение десятилетий) их нахождение в почвенном покрове и непрекращающееся поступления в сельскохозяйственную продукцию. Почва как основной компонент агроценоза оказывает определяющее влияние на интенсивность включения радиоактивных веществ в кормовые и пищевые цепи.

Поглощение почвами радионуклидов препятствует их передвижению по профилю почв, проникновению в грунтовые воды и в конечном счёте определят их аккумуляцию в верхних почвенных горизонтах.

Механизм усвоения радионуклидов корнями растений сходен с поглощением основных питательных веществ – макро и микроэлементов. Определённое сходство наблюдается в поглощении растениями и передвижения по ним стронция – 90 и цезия – 137 и их химических аналогов – кальция и калия поэтому содержание данных радионуклидов в биологических объектах иногда выражают по отношению к их химическим аналогам, в так называемых стронциевых и цезиевых единицах.

Радионуклиды Ru – 106, Ce – 144, Co – 60 концентрируются преимущественно в корневой системе и в незначительных количествах передвигаются в назёмные органы растений. В отличие от них стронций – 90 и цезий – 137 в относительно больших количествах накапливаются в наземной части растений.

Радионуклиды, поступившие в подземную часть растений, в основном концентрируются в соломе (листья и стебли), меньше – в мягкие (колосья, метёлки без зерна. Некоторые исключения из этой из этой закономерности составляет цезий, относительное содержание которого в семенах может достигать 10 % и выше общего количества его в надземной части. Цезий интенсивно передвигается по растению и относительно в больших количествах накапливается в молодых органах, чем очевидно вызвана повышенная концентрация его в зерне.

В общем накопление радионуклидов и их содержание на единицу массы сухого вещества в процессе роста растений наблюдается такая же закономерность, как и для биологически важных элементов: с возрастом растений в их надземных органах увеличивается абсолютное количество радионуклидов и снижается содержание на единицу массы сухого вещества. По мере увеличения урожая, как правило, уменьшается содержание радионуклидов на единицу массы.

Из кислых почв радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых, нейтральных и слабо щелочных. В кислых почвах повышается подвижность стронция – 90 и цезия – 137 снижается прочность их растениями. Внесение карбонатов кальция и калия или натрия в кислую дерново-подзолистую почву в количествах, эквивалентных гидролической кислотности, снижает размеры накопления долгоживущих радионуклидов стронция и цезия в урожае.

Существует тесная обратная зависимость накопления стронция – 90 в растениях от содержания в почве обменного кальция (поступление стронция уменьшается с увеличением содержания обменного кальция в почве).

Следовательно, зависимость поступления стронция – 90 и цезия –137 из почвы в растения довольно сложная, и не всегда её можно установить по какому-либо одному из свойств, в разных почвах необходимо учитывать комплекс показателей.

Пути миграции радионуклидов в организм человека различны. Значительная их доля поступает в организм человека по пищевой цепи: почва – растения – сельскохозяйственные животные – продукция животноводства – человек. В принципе радионуклиды могут поступать в организм животных через органы дыхания, желудочно-кишечный тракт и поверхность кожи. Если в период

радиоактивных выпадений крупных рогатый скот находится на пастбище, то поступление радионуклидов может составить (в относительных единицах): через пищеварительный канал 1000, органы дыхания 1, кожу 0,0001. Следовательно, в условиях радиоактивных выпадений основное внимание должно быть обращено на максимально возможное снижение поступления радионуклидов в организм сельскохозяйственных животных через желудочно-кишечный тракт.

Так как радионуклиды поступая в организм животных и человека могут накапливаться и оказывая неблагоприятное воздействие на здоровье и генофонд человека необходимо проводить мероприятия, снижающие поступление радионуклидов в сельскохозяйственные растения, снижение накопления радиоактивных веществ в организмах сельскохозяйственных животных. (1)


Глава 2 Особенности аккумуляции радионуклидов различными фитоценозами

2.1 Аккумуляция радионуклидов растениями лесных фитоценозов

Особенности поведения радиоактивных элементов в почве и растениях приводят к так называемой биогенной сепарации, которая проявляется в различном изотопном составе загрязнен­ной почвы и произрастающих на ней растений. Распределение радионуклидов по их органам строго спе­цифично и зависит от подвижности данного элемента в расте­нии, его доступности, биологических особенностей растения и т. д.

Вопрос о поступлении и распределении в растениях (осо­бенно древесных) различных радиоизотопов изучен недоста­точно, что объясняется отчасти трудностями определения радио­нуклидов в растениях вследствие незначительного их содержания. А между тем изучение поведения различных радиоактивных веществ, особенно долгоживущих, имеет немаловажное значе­ние для лесного хозяйства, так как дает возможность оценить радиобиологические эффекты, связанные с их транспортом в системе почва—растение, и получить прогнозные данные для разработки лесохозяйственных мероприятий на загрязненных радионуклидами территориях (создание лесных культур, заго­товка хвойно-витаминной муки, селекция древесных растений и т. д.).

Из выпавших в результате аварии на ЧАЭС радионуклидов наибольший интерес для лесного хозяйства представляют 90Sr и 47Cs, которые при соответствующих условиях могут активно включаться в древесную растительность корневым путем, в зна­чительной мере влиять на ее жизнедеятельность и определять степень использования. Большинство других радиоактивных изо­топов (103Ru, 106Ru, 144Ce и. др.) усваивается корневыми систе­мами в небольших количествах и с точки зрения загрязнения растительной продукции несущественно. Поэтому необходимо было оценить роль основных лесообразующих дре­весных растений в вертикальной миграции радионуклидов по содержанию радиоактивных веществ в различных органах рас­тений и почве в зависимости от уровня ее загрязнения, устано­вить вклад основных продуктов распада в корневое питание опытных растений. Принималось во внимание, что динамика накопления изучаемых элементов отражает потребность расте­ний в них.

Результаты исследования показали, что из важнейших дол­гоживущих продуктов деления через корневые системы в надзем­ную часть древесных растении в наибольших количествах по­ступали l37Cs и 134Cs. Они вносили основной вклад в удельную радиоактивность растений (в зависимости от их вида и плот­ности загрязнения почвы) — от 25 до 80% общей концентрации изучаемых элементов. Поглощение цезия-134 и - 137 надземными органами растений шло примерно одинаково (1 : 1). Некоторое несоблюдение этой закономерности при поступлении 134Cs и 137Cs в хвою второго и третьего года жизни объясняется, по нашему мнению, частичным поверхностным ее загрязнением. Наблюдается и определенная видовая специфичность в по­глощении цезия-134 и цезия-137 из почвы. Максимальная акку­муляция этого элемента отмечена в листьях березы, несколько меньшая — у дуба. Близкие концентрации цезия обнаружены в фотосинтезирующих органах осины, ольхи, хвое сосны первого года жизни. Относительно высокое содержание цезия-137 и це­зия-134 (по сравнению с почвой) наблюдается в хвое сосны обыкновенной второго года жизни.

Поглощение радионуклидов растениями определяется еще и сорбционными процессами в почве. Так, при поступлении из водного раствора в наибольших количествах поглощается 137Cs, в меньшей степени — 90Sr, тогда как при поступлении из почвы коэффициент накопления 137Cs намного меньше, чем 90Sr.

При исследовании поступления 90Sr и 137Cs в древесные рас­тения из почв в Гомельской и Могилевской областях, загрязнен­ных радионуклидами, такой закономерности не выявлено. Нао­борот, в значительно больших количествах в надземную часть древесных растений поступает из почвы 137Cs. Повышенная миграция 137Cs отмечалась и другими исследователями. Так, известно, что 137Cs из дерново-подзо­листых торфяных, супесчаных и песчаных почв Белорусского Полесья поступает в травянистые растения интенсивнее, чем 90Sr. На исследованных почвах наблюдается большее (в среднем в 10 раз) по сравнению с 90Sr поступление I37Cs в растения, о чем свидетельствует увеличение отношения 137Cs : 90Sr (до 16 раз). Считается, что основной причиной значительного по­ступления 137Cs в растительность данного региона является ма­лая фиксирующая способность почв по отношению к этому радионуклиду, что обусловлено особенностями их минералоги­ческого состава (невысоким содержанием илистых фракций, почти полным отсутствием глинистых минералов и высокой их гидроморфностью). Показано, что растениям доступен не только 137Cs, находящийся в обменной форме, но и радионуклид в необ­менной форме.

Сравнительное перемещение радионуклидов в системе поч­ва—растение удобно оценивать с помощью коэффициентов накопления (отношение концентрации элемента в растении к содержанию этого элемента в почве). При расчете коэффициен­тов нами использовались данные о концентрации радионукли­дов в верхнем (0—5 см) слое почвы и листьях, где находится значительное количество исследуемых радионуклидов.

Обнаружены существенные различия в содержании радио­активных веществ, обусловленные неодинаковой избирательной поглотительной способностью древесных растений (табл. 1). Наиболее высокие коэффициенты накопления (КН) характер­ны для поступления цезия в березу (2,8—3,8). Коэффициенты накопления для дуба и осины достаточно близки (1,39—1,56 и 1,42—1,44 соответственно). Мало различаются по этому пока­зателю и ольха с сосной. Наиболее высокий уровень потребле­ния стронция у дуба: коэффициент накопления равен 0,79. Близки к нему осина и ольха. Минимальная аккумуляция этого элемента отмечена у сосны (КН = 0,45). Береза по этому пока­зателю занимает промежуточное положение (КН = 0,50). Потребление других радиоактивных элементов (церия, плутония, рутения, празеодима) также неодинаково.

Таблица 1 Коэффициенты накопления радионуклидов из почвы различными из древесными породами

Объект

исследования

Элемент

90Sr

Pu

144Се

144Pr

106Ru

134Cs

137Cs

Береза

Осина

Дуб

Ольха

Сосна

0,50 0,60 0,79 0,60 0,450,30 0,09 0,18 0,22 0,191,44 1,66 1,37 1,12 0,73

2,79

2,72 0,29 0,73

1,52

0,83 0,53 0,88

2,85 1,42 1,39 0,53 0,483,82 1,44 1,56 0,71 0,74

Таблица 2. Содержание элементов питания в различных древесных растениях, %

Объект

исследования

Элемент
СаК

Береза

Осина

Дуб

Ольха

Сосна

1,43

0,68

1,16

0.71

0,33

0,36

1,42

1,11

0,39

0,53

Проведено сравнение поступления в исследуемые дре­весные растения изотопов стронция и цезия и их аналогов — калия и кальция, так как известно, что поведение стронция-90 в системе почва—растение сходно с миграцией кальция — его основного неизотопного но­сителя, а цезия-134 и -137 — с калием. Установленные кафедрой почвоведения МГУ закономерности в содержании калия и каль­ция в листьях исследуемых нами древесных пород в основном справедливы и для радиоактивных изотопов стронция-90 и це­зия-134 и -137 (табл. 2). Больше всего калия, кальция и ра­дионуклидов стронция и цезия поглощают и накапливают лист­венные древесные растения. Различия в поступлении и содер­жании радиоактивных изотопов цезия и стронция, обусловлен­ные биологическими особенностями древесных пород, сходны с усвоением растениями их химических аналогов — кальция и калия. Сопоставление данных табл. 3.3 и 3.4 показывает, что береза, осина и дуб накапливают в своих фотосинтезирующих органах радиоактивный изотоп цезия (как неизотопный калий) в количествах, превышающих их содержание в почве. Накоп­ление радиоактивного стронция из почв идет слабее, чем накоп­ление кальция, но видовая специфичность в основном сохра­няется. (5)

2.2 Особенности накопления радионуклидов растениями живого

напочвенного покрова в дубравах

Дубравы по степени загрязнения они сильно отличаются друг от друга. Так, экспозиционная доза излучения па уровне почвы в 1986 г. была 13 — 710 мкР/ч, за­грязненность почвы — 185,2 и 112,4. Экспозиционная доза излучения в 1987 г. снизилась в 5—7 раз, активность почвы — в 8—14 раз. В последующие годы отмечено дальнейшее сниже­ние обоих показателей. В 1993 г. экспозиционная доза излучения снизилась до 46—ПО мкР/'ч, активность почвы—до 1.7— 7,2 Ки/км2.

В напочвенном покрове дубрав широко распространены ор­ляк обыкновенный, плауны, мхи и представители следующих семейств: лютиковых, розоцветных, гречишных, гераниевых, зон­тичных, брусничных, первоцветных, норичнико­вых, сложноцветных, мареновых, ситниковых, лилейных, злако­вых. Для исследования были взяты орляк обыкновенный, плаун булавовидный, герань кроваво-красная, буквица лекарственная, ожика волосистая, ландыш майский, купена лекарственная, вейник наземный, овсяница овечья.

Растения живого напочвенного покрова, произрастающие в дубравах, обладали в 1987 г. несколько меньшей общей γ -активностью, чем в 1986 г., но разница у растений-эдификаторов и ястребинки зонтичной составила 50%, у остальных различия достигали 10—100 раз. По данным 1987 г., КНР снизились почти у всех видов. Максимальные значения зафиксированы в мае у марьянника дубравного, минимальные — у ландыша майского, буквицы лекарственной, купены лекарственной. К 1990 г. общая активность травянистой и полукустарничковой растительности была равна (Ки/кг): у орляка 3-10-7, мха Шребера — 8,5 -10-7, черники — 1,4-10-7, марьянника лугового — 9,8-10 8, майника двулистного—1,8-10 6, овсяницы овечьей — 5,5-10. В 1988 г. у растений живого напочвенного покрова колебались в следующих пределах: у орляка обыкновен­ного от 0,74 до 1,24, у марьянника дубравного от 0,24 до 2,71, у герани кроваво-красной от 0,02 до 0,82, у буквицы лекарствен­ной от 1,30

Подобные работы:

Актуально: