Анализ и комплекс мероприятий по обслуживанию локальной сети службы по делам детей Северодонецкого городского совета

1. ОСНОВЫ ПОСТРОЕНИЯ ЛОКАЛЬНЫХ СЕТЕЙ

1.1 Архитектурные принципы построения компьютерных сетей

1.2 Среда передачи данных

1.3 Базовые технологии построения локальных сетей

2. АНАЛИЗ И КОМПЛЕКС МЕРОПРИЯТИЙ ПО ОБСЛУЖИВАНИЮ ЛОКАЛЬНОЙ СЕТИ СЛУЖБЫ ПО ДЕЛАМ ДЕТЕЙ СЕВЕРОДОНЕЦКОЙ ГОРОДСКОГО СОВЕТА

2.1 Административные, технические и программные характеристики Службы по делам детей Северодонецкой городского совета

2.2 Анализ локальной компьютерной сети Службы по делам детей Северодонецкого городкого совета

2.3 Описание комплекса мероприятий по обслуживанию сети

2.3.1 Администрирование локальных сетей

2.3.2 Средства выявления неисправностей

3. ЭКОНОМИЧЕСКИЙ РАСЧЕТ СТОИМОСТИ ОБЪЕКТА АНАЛИЗА

3.1 Расчет затрат на создание проекта ЛВС

3.2 Расчет материальных затрат

3.3 Использование сетевого оборудования

3.4 Расчет технологической себестоимости ЛВС

3.5 Расчет капитальных затрат на создание ЛВС

3.6 Затраты при эксплуатации ЛВС

3.7 Расчет экономического эффекта на создание и эксплуатацию ЛВС

4. ОХРАНА ТРУДА

4.1 Организация рабочего места

4.2 Организация и расчет отопления

4.3 Расчет вентиляции

4.4 Расчет искусственного освещения помещений

4.5 Расчет природного освещения помещений

ВЫВОДЫ

ПРИЛОЖЕНИЕ А. Сравнительный анализ базовых технологий постоения локальных сетей


1. ОСНОВЫ ПОСТРОЕНИЯ ЛОКАЛЬНЫХ СЕТЕЙ

1.1 Архитектурные принципы построения компьютерных сетей

Сеть – это соединение разного оборудования, а значит, проблема совместимости является одной из наиболее острых. Без принятия всеми производителями общепринятых правил построения оборудования прогресс в деле «строительства» сетей был бы невозможен. Поэтому все развитие компьютерной отрасли в конечном счете отражено в стандартах.

В компьютерных сетях идеологической основной стандартизации является многоуровневый подход к разработке средств сетевого взаимодействия. Именно на основе этого подхода была разработана стандартная семиуровневая модель взаимодействия открытых систем, ставшая своего рода универсальным языком сетевых специалистов.

Организация взаимодействия между устройствами в сети является сложной задачей. Как известно, для решения сложных задач используется универсальный прием – декомпозиция, то есть разбиение одной сложной задачи на несколько более простых задач-модулей. Процедура декомпозиции включает в себя четкое определение функций каждого модуля, решающего отдельную задачу, и интерфейсов между ними.

При декомпозиции часто используется многоуровневый подход. Он заключается в следующем. Все множество модулей разбиваются на уровни. Уровни образуют иерархию, то есть имеются вышележащие и нижележащие уровни. Множество модулей, составляющих каждый уровень, сформировано таким образом, что для выполнения своих задач они обращаются с запросами только к модулям непосредственно примыкающего нижележащего уровня. С другой стороны, результаты работы всех модулей, принадлежащих некоторому уровню, могут быть переданы только модулям соседнего вышележащего уровня. Такая иерархическая декомпозиция задачи предполагает четкое определение функции каждого уровня и интерфейсов между уровнями. Интерфейс определяет набор функций, которые нижележащий уровень предоставляет вышележащему. В результате иерархической декомпозиции достигается относительная независимость уровней, а значит, и возможность их легкой замены.

Формальные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом. Модули, реализующие протоколы соседних уровней и находящихся в одном узле, также взаимодействуют друг с другом в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет набор сервисов, предоставляемый данным уровнем соседнему уровню. В сущности, протокол и интерфейс выражают одно и тоже понятие, но традиционно в сетях за ними закрепили разные области действия: протоколы определяют правила взаимодействия модулей одного уровня в разных узлах, а интерфейсы – модулей соседних уровней в одном узле.

Имея дело с 2-мя протоколами, и каждый из них имеет собственный протокол, который может быть изменен, не зависимо от протокола другого уровня. Эта независимость протоколов друг от друга и делает привлекательным многоуровневый подход.

В начале 80-х годов ряд международных организаций по стандартизации (ISO, ITU-T и некоторые другие) разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем или моделью OSI. Модель OSI определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

В модели OSI средства взаимодействия делятся на 7 уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с одним определенным аспектом взаимодействия сетевых устройств.

Модель OSI описывает только системные средства взаимодействия, реализуемые операционной системой, системными утилитами, системными аппаратными средствами. Модель не включает средства взаимодействия приложений конечных пользователей.

Самый нижний уровень модели предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов. Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством.

На этом уровне работают концентраторы (хабы), повторители (ретрансляторы) сигнала и медиаконверторы.

Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие свойства среды сети передачи данных как оптоволокно, витая пара, коаксиальный кабель, спутниковый канал передач данных и т. п.

Канальный уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает во фреймы, проверяет на целостность, если нужно исправляет ошибки (посылает повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием. На этом уровне работают коммутаторы, мосты.

В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI, NDIS.

3-й уровень (сетевой уровень) модели OSI предназначен для определения пути передачи данных, отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор.

Протоколы сетевого уровня маршрутизируют данные от источника к получателю и могут быть разделены на два класса: протоколы с установкой соединения и без него.

Описать работу протоколов с установкой соединения можно на примере работы обычного телефона. Протоколы этого класса начинают передачу данных с вызова или установки маршрута следования пакетов от источника к получателю. После чего начинают последовательную передачу данных и затем по окончании передачи разрывают связь.

Транспортный уровень модели предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом не важно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает. Протоколы этого уровня предназначены для взаимодействия типа точка-точка. Пример: TCP, UDP.

Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных.

Некоторые протоколы сетевого уровня, называемые протоколами без установки соединения, не гарантируют, что данные доставляются по назначению в том порядке, в котором они были посланы устройством-источником. Некоторые транспортные уровни справляются с этим, собирая данные в нужной последовательности до передачи их на сеансовый уровень. Мультиплексирование данных означает, что транспортный уровень способен одновременно обрабатывать несколько потоков данных (потоки могут поступать и от различных приложений) между двумя системами. Механизм управления потоком данных — это механизм, позволяющий регулировать количество данных, передаваемых от одной системы к другой. Протоколы транспортного уровня часто имеют функцию контроля доставки данных, заставляя принимающую данные систему отправлять подтверждения передающей стороне о приеме данных.

Сеансовый уровень модели отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды не активности приложений. Синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при нарушении взаимодействия.

Представительский уровень отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с уровня приложений, он преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Данный уровень обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой. Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

Прикладной уровень, верхний уровень модели, обеспечивает взаимодействие сети и пользователя. Уровень разрешает приложениям пользователя иметь доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты. Также отвечает за передачу служебной информации, предоставляет приложениям информацию об ошибках и формирует запросы к уровню представления.

Модель OSI представляет хотя и очень важную, но только одну из многих моделей коммуникаций. Эта модель и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, службами, поддерживаемыми на верхних уровнях, и прочими параметрами.

1.2 Среда передачи данных

На сегодняшний день подавляющая часть компьютерных сетей использует для соединения провода или кабели. Они выступают в качестве среды передачи сигналов между компьютерами. Существуют различные типы кабелей, которые удовлетворяют потребности всевозможных сетей, от малых до больших.

В широком ассортименте кабелей нетрудно запутаться. Так, фирма Belden, ведущий производитель кабелей, публикует каталог, где предлагает более 2200 их типов. К счастью, в большинстве сетей применяются только три основные группы кабелей: коаксиальный кабель, витая пара (неэкранированная, экранированная) и оптоволоконный кабель.

Не так давно коаксиальный кабель был самым распространенным типом кабеля. Это объяснялось двумя причинами. Во-первых, он был относительно недорогим, легким, гибким и удобным в применении. А во-вторых, широкая популярность коаксиального кабеля привела к тому, что он стал безопасным и простым в установке.

Самый простой коаксиальный кабель состоит из медной жилы (core), изоляции, ее окружающей, экрана в виде металлической оплетки и внешней оболочки. Если кабель, кроме металлической оплетки, имеет и слой фольги, он называется кабелем с двойной экранизацией. При наличии сильных помех можно воспользоваться кабелем с учетверенной экранизацией. Он состоит из двойного слоя фольги и двойного слоя металлической оплетки.

Некоторые типы кабелей покрывает металлическая сетка — экран (shield). Он защищает передаваемые по кабелю данные, поглощая внешние электромагнитные сигналы, называемые помехами или шумом. Таким образом, экран не позволяет помехам исказить данные.

Электрические сигналы, кодирующие данные, передаются по жиле. Жила — это один провод (сплошная) или пучок проводов. Сплошная жила изготавливается, как правило, из меди.

Жила окружена изоляционным слоем, который отделяет ее от металлической оплетки. Оплетка играет роль заземления и защищает жилу от электрических шумов (noise) и перекрестных помех (crosstalk). Перекрестные помехи — это электрические наводки, вызванные сигналами в соседних проводах.

Проводящая жила и металлическая оплетка не должны соприкасаться, иначе произойдет короткое замыкание, помехи проникнут в жилу, и данные разрушатся. Снаружи кабель покрыт непроводящим слоем — из резины, тефлона или пластика.

Коаксиальный кабель более помехоустойчив, затухание сигнала в нем меньше, чем в витой паре. Затухание (attenuation) — это уменьшение величины сигнала при его перемещении по кабелю.

Как уже говорилось, плетеная защитная оболочка поглощает внешние электромагнитные сигналы, не позволяя им влиять на передаваемые по жиле данные, поэтому коаксиальный кабель можно использовать при передаче на большие расстояния и в тех случаях, когда высокоскоростная передача данных осуществляется на несложном оборудовании.

Существует два типа коаксиальных кабелей:

- тонкий коаксиальный кабель;

- толстый коаксиальный кабель.

Тонкий коаксиальный кабель — гибкий кабель диаметром около 0,5 см (около 0,25 дюймов). Он прост в применении и годится практически для любого типа сети. Подключается непосредственно к платам сетевого адаптера компьютеров.

Тонкий коаксиальный кабель способен передавать сигнал на расстояние до 185 м (около 607 футов) без его заметного искажения, вызванного затуханием.

Производители оборудования выработали специальную маркировку для различных типов кабелей. Тонкий коаксиальный кабель относится к группе, которая называется семейством RG-58, его волновое сопротивление равно 50 Ом. Волновое сопротивление (impedance) — это сопротивление переменному току, выраженное в омах. Основная отличительная особенность этого семейства — медная жила. Она может быть сплошной или состоять из нескольких переплетенных проводов.

Толстый (thick) коаксиальный кабель — относительно жесткий кабель с диаметром около 1 см (около 0,5 дюймов). Иногда его называют «стандартный Ethernet», поскольку он был первым типом кабеля, применяемым в Ethernet — популярной сетевой архитектуре. Медная жила этого кабеля толще, чем у тонкого коаксиального кабеля.

Чем толще жила у кабеля, тем большее расстояние способен преодолеть сигнал. Следовательно, толстый коаксиальный кабель передает сигналы дальше, чем тонкий, — до 500 м (около 1 640 футов). Поэтому толстый коаксиальный кабель иногда используют в качестве основного кабеля (магистрали), который соединяет несколько небольших сетей, построенных на тонком коаксиальном кабеле.

Как правило, чем толще кабель, тем сложнее с ним работать. Тонкий коаксиальный кабель гибок, прост в установке и относительно недорог. Толстый кабель трудно гнуть, и, следовательно, его сложнее устанавливать. Это очень существенный недостаток, особенно если необходимо проложить кабель по трубам или желобам. Толстый коаксиальный кабель дороже тонкого, но при этом он передает сигналы на большие расстояния.

Самая простая витая пара — это два перевитых вокруг друг друга изолированных медных провода. Существует два типа тонкого кабеля: неэкранированная витая пара и экранированная витая пара.

Несколько витых пар часто помещают в одну защитную оболочку. Их количество в таком кабеле может быть разным. Завивка проводов позволяет избавиться от электрических помех, наводимых соседними парами и другими источниками, например двигателями, реле и трансформаторами.

Неэкранированная витая пара (спецификация lOBaseT) широко используется в ЛВС, максимальная длина сегмента составляет 100 м (328 футов).

Неэкранированная витая пара состоит из двух изолированных медных проводов. Существует несколько спецификаций, которые регулируют количество витков на единицу длины — в зависимости от назначения кабеля. В Северной Америке UTP повсеместно используется в телефонных сетях.

Неэкранированная витая пара определена в особом стандарте - Electronic Industries Association and the Telecommunications Industries Association (EIA/TIA) 568 Commercial Building Wiring Standart. EIA/TIA 568 — на основе UTP — устанавливает стандарты для различных случаев, гарантируя единообразие продукции. Эти стандарты включают пять категорий UTP.

Категория 1.Традиционный телефонный кабель, по которому можно передавать только речь, но не данные. Большинство телефонных кабелей, произведенных до 1983 года, относится к категории 1.

Категория 2.Кабель, способный передавать данные со скоростью до 4 Мбит/с. Состоит из четырех витых пар.

Категория 3.Кабель, способный передавать данные со скоростью до 10 Мбит/с. Состоит из четырех витых пар с девятью витками на метр.

Категория 4. Кабель, способный передавать данные со скоростью до 16 Мбит/с. Состоит из четырех витых пар.

Категория 5. Кабель, способный передавать данные со скоростью до 100 Мбит/с. Состоит из четырех витых пар медного провода.

Большинство телефонных систем использует неэкранированную витую пару. Это одна из причин ее широкой популярности. Причем во многих зданиях, при строительстве, UTP прокладывают не только для сегодняшних нужд телефонизации, но и, предусматривая запас кабеля, в расчете на будущие потребности. Если установленные во время строительства провода рассчитаны на передачу данных, их можно использовать и в компьютерной сети. Однако надо быть осторожным, так как обычный телефонный провод не имеет витков, и его электрические характеристики могут не соответствовать тем, какие требуются для надежной и безопасной передачи данных между компьютерами.

Одной из потенциальных проблем для всех типов кабелей являются перекрестные помехи. Вы, должно быть, помните, что перекрестные помехи — это электрические наводки, вызванные сигналами в смежных проводах. Неэкранированная витая пара особенно страдает от перекрестных помех. Для уменьшения их влияния используют экран.

Кабель экранированной витой пары (STP) имеет медную оплетку, которая обеспечивает большую защиту, чем неэкранированная витая пара. Кроме того, пары проводов STP обмотаны фольгой. В результате экранированная витая пара обладает прекрасной изоляцией, защищающей передаваемые данные от внешних помех. Все это означает, что STP, по сравнению с UTP, меньше подвержена воздействию электрических помех и может передавать сигналы с более высокой скоростью и на большие расстояния.

Для подключения витой пары к компьютеру используются телефонные коннекторы RJ-45. На первый взгляд, они похожи на RJ-11, но в действительности между ними есть существенные отличия. Во-первых, вилка RJ-45 чуть больше по размерам и не подходит для гнезда RJ-11. Во-вторых, коннектор RJ-45 имеет восемь контактов, a RJ-11 — только четыре.

Построить развитую кабельную систему и в то же время упростить работу с ней Вам поможет ряд очень полезных компонентов.

- распределительные стойки и полки.

- распределительные стойки и полки предназначены для монтажа кабеля. они позволяют централизованно организовать множество соединений и при этом занимают достаточно мало места.

- коммутационные панели. существуют разные типы панелей расширения. они поддерживают до 96 портов и скорость передачи до 100 мбит/с.

- коннекторы. одинарные или двойные вилки rj-45 подключаются к панелям расширения или настенным розеткам. они обеспечивают скорость передачи до 100 мбит/с.

- розетки

В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Это относительно надежный (защищенный) способ передачи, поскольку электрические сигналы при этом не передаются. Следовательно, оптоволоконный кабель нельзя вскрыть и перехватить данные, от чего не застрахован любой кабель, проводящий электрические сигналы.

Оптоволоконные линии предназначены для перемещения больших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается.

Оптическое волокно — чрезвычайно тонкий стекляшчьш цилиндр, называемый жилой (core), покрытый слоем стекла, называемого оболочкой, с иным, чем у жилы, коэффициентом преломления. Иногда оптоволокно производят из пластика. Пластик проще в использовании, но он передает световые импульсы на меньшие расстояния по сравнению со стеклянным оптоволокном.

Каждое стеклянное оптоволокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон с отдельными коннекторами. Одно из них служит для передачи, а другое -- для приема. Жесткость волокон увеличена покрытием из пластика, а прочность — волокнами из кевлара. На рисунке представлен пример кевларового покрытия. Кевларовые волокна располагаются между двумя кабелями, заключенными в пластик.

Передача по оптоволоконному кабелю не подвержена электрическим помехам и ведется на чрезвычайно высокой скорости (в настоящее время до 100 Мбис/с, теоретически возможная скорость - 200 000 Мбит/с). По оптоволоконному кабелю можно передавать световой импульс на многие километры.

Выше были рассмотрены кабельные линий связи, но ещё существует проводные (воздушные) линии связи и радиоканалы наземной и спутниковой связи.

Проводные воздушные линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенных между столбами и висящие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии используется и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи уже почти нигде не встречается.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приёмника радиоволн. Существует большое количество различных типов радиоканалов, отличающихся как используемым частотным диапозоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн, называемые также диапазонами амплитудной модуляции по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но работающие на диапазонах ультракоротких волн, для которых характерна частотная модуляция, а также диапазонах сверхчастот (СВЧ). В диапазоне СВЧ (свыше 4ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, где это условие выполняется.

1.3 Базовые технологии построения локальных сетей

За время, прошедшее с момента появления первых локальных сетей, было разработано несколько сот самых разных сетевых технологий, однако заметное распространение получили немногие. Это связано, прежде всего, с высоким уровнем стандартизации принципов организации сетей и с поддержкой их известными компаниями. Тем не менее, не всегда стандартные сети обладают рекордными характеристиками, обеспечивают наиболее оптимальные режимы обмена. Немаловажно и то, что производители программных средств также в первую очередь ориентируются на самые распространенные сети. Далее будут рассмотрены особенности основных технологий локальных сетей.

Token Ring разработан фирмой IBM. В качестве передающей среды применяется неэкранированная или экранированная витая пара (UPT или SPT) или оптоволокно. Скорость передачи данных 4 Мбит/с или 16Мбит/с. В качестве метода управления доступом станций к передающей среде используется метод - маркерное кольцо (Тоken Ring).

Основные положения этого метода:

- устройства подключаются к сети по топологии кольцо;

- все устройства, подключенные к сети, могут передавать данные, только получив разрешение на передачу (маркер);

- в любой момент времени только одна станция в сети обладает таким правом.

В IВМ Тоkеn Ring используются три основных типа пакетов: пакет управление/данные (Data/Соmmand Frame), маркер (Token) и пакет сброса (Аbort).

С помощью пакета управление/данные выполняется передача данных или команд управления работой сети. С помощью типа маркер станция может начать передачу данных только после получения такого пакета. В одном кольце может быть только один маркер и, соответственно, только одна станция с правом передачи данных. Посылка пакета сброса называет прекращение любых передач.

В сети можно подключать компьютеры по топологии звезда или кольцо.

Arknet - простая, недорогая, надежная и достаточно гибкая архитектура локальной сети. Разработана корпорацией Datapoint в 1977 году. Впоследствии лицензию на Аrcnet приобрела корпорация SМС (Standard Microsistem Corporation), которая стала основным разработчиком и производителем оборудования для сетей Аrcnet. В качестве передающей среды используются витая пара, коаксиальный кабель (RG-62) с волновым сопротивлением 93 Ом и оптоволоконный кабель. Скорость передачи данных - 2,5 Мбит/с. При подключении устройств в Аrcnet применяют топологии шина и звезда. Метод управления доступом станций к передающей среде - маркерная шина (Тоken Bus).

Этот метод предусматривает следующие правила:

- все устройства, подключенные к сети, могут передавать данные только получив разрешение на передачу (маркер);

- в любой момент времени только одна станция в сети обладает таким правом;

- данные, передаваемые одной станцией, доступны всем станциям сети.

Передача каждого байта в Аrcnet выполняется специальной посылкой ISU(Information Symbol Unit - единица передачи информации), состоящей из трех служебных старт/стоповых битов и восьми битов данных. В начале каждого пакета передается начальный разделитель АВ (Аlегt Вurst), который состоит из шести служебных битов. Начальный разделитель выполняет функции преамбулы пакета.

В Аrcnet определены 5 типов пакетов:

1) пакет IТТ (Information To Transmit) - приглашение к передаче. Эта посылка передает управление от одного узла сети другому. Станция, принявшая этот пакет, получает право на передачу данных.

2) пакет FBE (Free Buffeг Еnquiries) - запрос о готовности к приему данных. Этим пакетом проверяется готовность узла к приему данных.

3) пакет данных. С помощью этой посылки производиться передача данных.

4) пакет АСК (ACKnowledgments) - подтверждение приема. Подтверждение готовности к приему данных или подтверждение приема пакета данных без ошибок, т.е. в ответ на FBE и пакет данных.

5) пакет NAK (Negative AcKnowledgments) - неготовность к приему. Неготовность узла к приему данных (ответ на FBE) или принят пакет с ошибкой.

В сети Arknet можно использовать две топологии: звезда и шина.

Ethernet – это самый распространенный на сегодняшний день стандарт локальных сетей.

Спецификацию Ethernet в конце семидесятых годов предложила компания Xerox Corporation. Позднее к этому проекту присоединились компании Digital Equipment Corporation (DEC) и Intel Corporation. В 1982 году была опубликована спецификация на Ethernet версии 2.0. На базе Ethernet институтом IEEE был разработан стандарт IEEE 802.3. Различия между ними незначительные.

На логическом уровне в Ethernet применяется топология шина:

- все устройства, подключенные к сети, равноправны, т.е. любая станция может начать передачу в любой момент времени(если передающая среда свободна);

- данные, передаваемые одной станцией, доступны всем станциям сети.

Метод управления доступом (для сети на коаксиальном кабеле) — множественный доступ с контролем несущей и обнаружением коллизий скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Режим работы полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов, в основном по причине увеличивающегося количества коллизий.

FDDI (Fiber Distributed Data Interface — распределённый волоконный интерфейс данных) — стандарт передачи данных в локальной сети, протянутой на расстоянии до 200 километров. Стандарт основан на протоколе Token Ring. Кроме большой территории, сеть FDDI способна поддерживать несколько тысяч пользователей.

В качестве среды передачи данных в FDDI рекомендуется использовать оптоволоконный кабель, однако можно использовать и медный кабель, в таком случае используется сокращение CDDI (Copper Distributed Data Interface). В качестве топологии используется схема двойного кольца, при этом данные в кольцах циркулируют в разных направлениях. Одно кольцо считается основным, по нему передаётся информация в обычном состоянии; второе — вспомогательным, по нему данные передаются в случае обрыва на первом кольце. Для контроля за состоянием кольца используется сетевой маркер, как и в технологии Token Ring. Поскольку такое дублирование повышает надёжность системы, данный стандарт с успехом применяется в магистральных каналах связи.

Сравнительный анализ существующих технологий представлен в Приложении А.


2. АНАЛИЗ И КОМПЛЕКС МЕРОПРИЯТИЙ ПО ОБСЛУЖИВАНЮ ЛОКАЛЬНОЙ СЕТИ СЛУЖБЫ ПО ДЕЛАМ ДЕТЕЙ СЕВЕРОДОНЕЦКОЙ ГОРОДСКОГО СОВЕТА

2.1 Административные, технические и программные характеристики Службы по делам детей Северодонецкой городской рады

Проанализируем структуру Службы по делам детей Северодонецкой городского совета. Назначением данной службы является, реализация политики по вопросам социальной защиты детей и предотвращения детской безприглядности и совершения правонарушений детьми. Данная служба является юридическим лицом. В состав данной службы входят такие структурные подразделения как главная бухгалтерия и сектор по вопросу опеки по попечительству. Ниже представлена схема организационной структуры предприятия (см. рисунок 2.1).



Рисунок 2.1 - Организационная структура предприятия.

План помещения состоит из следующих кабинетов:

1) кабинет начальника;

2) кабинет бухгалтера;

3) кабинет заведующего по вопросу опеки и попечительству;

4) кабинет специалиста I категории;

5) кабинет специалистов.

Графический план представлен в Приложении Б.

В кабинете начальника расположены такие технические средства как компьютер (1шт), принтер (1шт) и телефон.

В кабинете главного бухгалтера расположены компьютер (1шт) и ксерокс (1шт).

В кабинете заведующего сектором по вопросу опеки и попечительства расположены компьютер (1шт) и сканер (1шт).

В кабинете специалиста I категории расположены компьютер (1шт) и принтер (1шт).

В кабинете специалистов расположены компьютер (1шт) и принтер (1шт).

Компьютер, расположеный в кабинете начальника, имеет такие технические характеристики:

- процессора Intel Core 2 Quad 2.33 Ghz;

- материнская плата - на базе чипсета Intel P35Express + ICH10;

- оперативная память - DDR II 4 GB PC2-6400 800 MHz;

- жесткий диск - 150 GB Serial ATA 16 Mb;

- графический акселератор - NVIDIA 9600GT 512MB/256bit;

- оптический привод DVD -RW/+RW;

- корпус - ATX Middle Tower GIGABYTE GZ-X1 420W (Brand GIGABYTE);

- акустика - STORM U-709A;

- манипулятор «мышь»;

- клавиатура PS/2 A-4 Tech KB(S)-26.

Компьютер, расположенный в кабинете заведующего по делам опеки и попечительства, имеет такие же характеристики как и компьютер, расположеный в кабинете главного бухгалтера:

- процессор – AMD Socket AM2 ATHLON 64 X2 5200+ BOX;

- материнская прлата – MB Asus P4PE-2x;

- оперативная память – DDR 512 PC3200;

- жёсткий диск - USB 2.0 PRESTIGIO Data Safe II 2.5" 160GB USB 2.0;

- оптический привод DVD -RW/+RW;

- корпус ATX 4U 4203, 350 W Black;

- монитор 19" TFT Prestigio P1910;

- манипулятор «мышь»;

- клавиатура PS/2 A-4 Tech KB(S)-720.

Компьютеры,расположеные в кабинетах специалиста I категории и в кабинете специалистов, имеют следующие характеристики:

- процессор – AMD Socket AM2 ATHLON 64 X2 5400+ BOX;

- материнская прлата – ASUS M2A-VM SocketAM2 AMD 690G PCI-E;

- оперативная память – DDR 512 PC3200;

- жёсткий диск - SATA II 160.0g 7200 Samsung 8Mb (NCQ);

- оптический привод DVD -RW/+RW;

- корпус ATX Midle Tower ASUS TA-668, 350W;

- монитор CRT 17" LG F720B FLATRON;

- манипулятор «мышь»;

- клавиатура PS/2 A-4 Tech KB(S)-720.

В работе предприятия используются следующие программные продукты:

- Windows XP Home Edition Russian CD BOX;

- Get Genuine Kit Win XP Pro Russian w/SP 1 License;

- Office Professional Plus 2007 Russian OPL NL;

- Kaspersky Internet Security 2009 5-Desktop 1 year Base Box;

- ABBYY Fine Reader 9.0 Professional Edition;

- RAR Archiver.

Таким образом рассмотрев организационную структуру предприятия можно сказать, что на предприятии осуществляются информационные потоки

- от начальника к главному бухгалтеру и заведующему сектором по вопросам опеки и попечительства в виде приказов;

- от заведующего сектором по вопросам опеки и попечительству к специалисту I категории и трем специалистам в виде приказов;

- от специалиста I категории и специалистов к заведующему сектором по вопросам опеки и попечительства в виде отчетов;

- от главного бухгалтера и заведующего сектором по вопросам опеки и попечительства к начальнику в виде отчетов.

Для обеспечения данного информационного потока в Службе по делам детей Северодонецкого городского совета создана локальная сеть.

2.2 Анализ локальной компьютерной сети Службы по делам детей Северодонецкого городкого совета

Проанализировав существующую сеть можно сказать, что

1) используемая технология – Ethernet;

2) среда передачи данных – коаксиальный кабель;

3) сетевое оборудование – GETNET 16 PORT Switch 10/100 GS-D16P;

4) рабочая станция (2шт) имеет следующие характеристики:

- процессор – AMD Socket AM2 ATHLON 64 X2 5400+ BOX;

- материнская прлата – ASUS M2A-VM SocketAM2 AMD 690G PCI-E;

- оперативная память – DDR 512 PC3200;

- жёсткий диск - SATA II 160.0g 7200 Samsung 8Mb (NCQ);

- оптический привод DVD -RW/+RW;

- корпус ATX Midle Tower ASUS TA-668, 350W;

- монитор CRT 17" LG F720B FLATRON;

- манипулятор «мышь»;

- клавиатура PS/2 A-4 Tech KB(S)-720.

Рабочая станция (2шт) имеет следующие характеристики:

- процессор – AMD Socket AM2 ATHLON 64 X2 5200+ BOX

- материнская прлата – MB Asus P4PE-2x

- оперативная память – DDR 512 PC3200

- жё

Подобные работы:

Актуально: