Практические задачи по ТОУЭС

1. Рассчитайте параметры сетевого графа


Работа

i, j

Продол.
tij

Ранние срокиПоздние сроки

Полный резерв
rn

Свободн. резерв
rсв

tiPH

tjPO

tiПH

tjПО

(0, 1)1001051555

(0, 2)

80808

0К

0
(0, 3)3036900
(1, 5)31013151855
(2, 4)481291311

(2, 6)

6814814

0К

0
(3, 6)53891466
(4, 5)11213171855
(4, 10)1612281127-1-1
(5, 7)51318182355

(6, 8)

414181418

0К

0
(6, 10)121426152711
(7, 10)41822232755

(8, 9)

618241824

0К

0

(9, 10)

324272427

0К

0

К – критические операции

Продолжительность критического пути: 8 + 6 + 4 + 6 + 3 = 27


2. Оценить с достоверностью 90% оптимистичный
и пессимистичный срок завершения работ.

Эксперты

1234567891011121314151617181920
676544456664481034456

Упорядочиваем по возрастанию:

10, 8, 7, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3

Отбрасываем первые два значения и находим Qопт:

Qопт = 89 / 18 = 4,94

Упорядочиваем по убыванию и аналогично находим Qпес:

Qпес = 100 / 18 = 5,55

Находим Qср:

Qср = 107 / 20 = 5,35

Отклонение Qопт от Qср – 7,6%; Qпес от Qср – 3,7%. Оба значения в пределах 10%, таким образом достоверность 90% обеспечена.


3. Рассчитать требуемое количество экспертов, при котором влияние
1 эксперта на среднюю оценку составляет не более x = 9%.

Пробная оценка x + 1 экспертов:

6, 7, 6, 5, 4, 4, 4, 5, 6, 6

х = 9% => 0,91 £ E £ 1,09

Qср = 53 / 10 = 5,3

b = 10

T =

Таким образом, 9 человек – требуемое количество экспертов для проведения групповой оценки с влиянием одного эксперта не более 9%.


4. Проверить оптимальность указанных планов

f (x) = 3 x1 + 2 x2 – 4 x3 +5 x4 –> max

3 x1 + 2 x2 + 2 x3 – 2 x4 ³ -1

2 x1 + 2 x2 + 3 x3 – x4 ³ -1

x1 ³ 0 x2 ³ 0

x3 ³ 0 x4 ³ 0

Координаты вектора x(1) не соответствуют ограничениям, т .к. х2 < 0

Остальные векторы подставляем в систему неравенств:

Таким образом, вектор х (4) тоже не удовлетворяет условиям. Вычисляем значения f(x):

x(2): f (x) = 0 + 4 – 0 + 5 = 9

x(3): f (x) = 0 + 0 - 4 + 5 = 1

Функция достигает максимума в x(2) (0, 2, 0, 1).


5. Решить графически задачу линейного программирования:

f (x) = 2 x1 + 4 x2 –> min

x1 + 2 x2 £ 5

3 x1 + x2 ³ 5

0 £ x1 £ 4 0 £ x2 £ 4

Найдем множество решений неравенств:

х1 + 2 х2 £ 5, если х1 = 0, то х2 £ 2,5

если х2 = 0, то х1 £ 5 точки прямой 1: (0; 2,5) и (5; 0)

3 х1 + х2 ³ 5, если х1 = 0, то х2 ³ 5

если х2 = 0, то х1 ³ 1, 67 точки прямой 2: (0; 5) и (1,67; 0)

Найдем координаты точек A, B, C, D:

A (1,67; 0) и D (4; 0) – из неравенств

B (1; 2) как точка пересечения прямых из системы

С (4; 0,5) – x1 = 4 из неравенства x1<4, а x2 из уравнения 4 + 2 x2 = 5

Вычислим значение функции в этих точках:

A: f (x) = 2 * 1,67 + 4 * 0 = 3,33

B: f (x) = 2 * 1 + 4 * 2 = 10

C: f (x) = 2 * 4 + 4 * 0,5 = 10

D: f (x) =2 * 4 + 4 * 0 = 8

Функция принимает минимальное значение в точке A (1,67; 0).


6. Решить задачу

Механический завод при изготовлении 3-х разных деталей использует токарный, фрезерный и строгальный станки. при этом обработку каждой детали можно вести 2-мя разными способами. В таблице указаны ресурсы времени каждой группы станков, нормы времени при обработке детали на соответствующем станке по данному технологическому способу и прибыль от выпуска единицы детали каждого вида.

Норма времени, станко/час

Ресурсы времени

Станок

I деталь

II деталь

III деталь

1

2

1

2

1

2

Токарный

0,40,90,50,50,7250

Фрезерный

0,50,60,20,31,4450

Строгальный

0,30,50,41,51,0600

Прибыль

121830

Определить производственную программу, обеспечивающую максимальную прибыль.

Решение:

Пусть x1, x2, x3 – загрузка станков.

Таким образом 0 £ x1 £ 250;

0 £ x2 £ 450;

0 £ x3 £ 600.

При первом способе технологической обработки получаем:

0,4 x1 + 0,5 x2 + 0,7 x3 £ 250

0,5 x1 + 0,6 x2 + 0,3 x3 £ 450

0,3 x1 + 0,4 x2 £ 600

0,4 x1 + 0,5 x2 + 0,3 x3 ³ 12

0,5 x1 + 0,6 x2 + 0,4 x3 ³ 18

0,7 x1 + 0,3 x2 ³ 30

Необходимо найти решение, при котором f (x) = 12 x1 + 18 x2 + 30 x3 –> max

Подобные работы:

Актуально: