Процессоры ЭВМ

За время существования электронная промышленность пережила немало потрясений и революций. Коренной перелом - создание электронных микросхем на кремниевых кристаллах, которые заменили транзисторы и которые назвали интегральными схемами. Со времени своего появления интегральные схемы делились на: малые, средние, большие и ультра большие (МИС, СИС, БИС и УБИС соответственно). Все больше и больше транзисторов удавалось поместить на всё меньших и меньших по размерам кристаллах. Следовательно, ультра большая интегральная схема оказывалась не такой уж большой по размеру и огромной по своим возможностям. Поэтому процессоры созданы именно на основе УБИС. Развитие микропроцессоров в электронной индустрии проходило настолько быстрыми темпами, что каждая модель микропроцессора становилась маломощной с момента появления новой модели, а ещё через 2-3 года считалась устаревшей и снималась с производства.

2.Микропроцессор

Микропроцессор - самостоятельное или входящее в состав ЭВМ устройство, осуществляющее обработку информации и управляющее этим процессом, выполненное в виде одной или нескольких БИС. В общем случае в состав микропроцессора входят: арифметико-логическое устройство (АЛУ), блок управления и синхронизации, ЗУ, регистры и др. блоки, необходимые для выполнения операций вычислительного процесса. Как БИС микропроцессор характеризуется степенью интеграции, потребляемой мощностью, помехоустойчивостью, нагрузочной способностью активных выводов (определяющей возможность подключения к данному микропроцессору и др. БИС) технологией изготовления, типом корпуса, техническим ресурсом, устойчивостью к механическим, климатическим и радиационным воздействиям. Как вычислительное устройство микропроцессор характеризуется производительностью, разрядностью обрабатываем данных и выполняемых команд, возможностью увеличения разрядности, числом команд ( микрокоманд ), количеством внутренних регистров, возможностью обеспечения режима прерывания ( уровней приоритета ) способностью к обработке десятичных кодов, объемом адресной памяти, наличием канала прямого доступа к памяти, типом и числом входных и выходных шин и их разрядностью, наличием и видом программного обеспечения, способом управления.

Микропроцессоры, используемые в средствах вычислительной техники различного назначения (для решения широкого круга разнотипных задач), называются универсальными. Микропроцессоры, предназначенные для построения какого-либо одного типа вычислительных устройств, называются специализированными; типичный пример – микропроцессор в калькуляторе. По способу управления различают микропроцессоры со схемным и микропрограммным управлением. Микропроцессоры со схемным управлением имеют более высокое быстродействие, однако, их работа однозначно определяется постоянным набором команд (хранящихся в их памяти) и соответствующей электрической схемой, которая зачастую бывает довольно сложной из-за необходимости иметь в микропроцессоре как можно больше команд. Функционирование микропроцессора с микропрограммным управлением определяется последовательностью микрокоманд, состав и очередность выполнения которых устанавливается оператором. Такие микропроцессоры имеют сравнительно невысокое быстродействие, но они более универсальны, легче перестраиваются с одной программы на другую.

По структуре микропроцессоры подразделяются на секционированные (как правило, с микропрограммным управлением) и однокристальные (с фиксированной разрядностью и постоянным набором команд). Секционированные микропроцессоры допускают расширение разрядности и емкости ЗУ (за счет подключения дополнительных секций) и обладают способностью к расширению своих функциональных возможностей. Это обусловлено тем, что секционированные микропроцессоры набираются из БИС, каждая из которых способна объединяться с другими БИС, образуя при этом различные функциональные устройства. К секционированным микропроцессорам обычно подключается БИС постоянного ЗУ с хранящимися в нем микрокомандами. Процессорная секция микропроцессора этого типа состоит из секции АЛУ, блока регистров, входных мультиплексоров, выходного регистра адреса и регистра-аккумулятора, дешифратора микрокоманд, входных Вх Ш и выходных Вых Ш шин. Управление работой микропроцессорной секции осуществляется сигналами, выдаваемыми дешифратором микрокоманд. Каждая новая микрокоманда поступает после исполнения предыдущей. Исходные данные передаются из оперативного ЗУ или из устройств ввода – вывода информации через мультиплексоры в секцию АЛУ. Результат выполнения операций через регистр-аккумулятор направляется по адресу, сформированному в выходном регистре адреса, а также на блок регистров для временного хранения и на мультиплексоры для использования на следующих этапах вычислений. Связь между секциями осуществляется через линии международных связей.

Однокристальный микропроцессор с фиксированной микро разрядностью и с постоянным набором команд конструктивно исполняется в виде одной БИС. Такой микропроцессор выполняет функции процессора ЭВМ, все операции которого определяются хранящимися в его памяти командами. В состав однокристального микропроцессора входят: АЛУ, выходной регистр адреса, регистр-аккумулятор, блок регистров, регистр признаков, схема управления, входная и выходная шины и канал управления. Особенность однокристального микропроцессора – наличие внутренней шины, по которой происходит обмен информацией между устройствами микропроцессора.

По функциональным возможностям микропроцессор соответствует процессору ЭВМ, выполненному на 20-40 ИС малой и средней степени интеграции, но обладает большим быстродействием, существенно меньшими размерами, массой, потребляемой мощностью и стоимостью.

Микропроцессоры получили широкое применение в системах управления технологическим и контрольно-испытательным оборудованием, транспортными средствами, космическими аппаратами, бытовыми приборами и т.д. Малые размеры, масса и энергоемкость микропроцессора позволяют встраивать его непосредственно в объект управления. На базе микропроцессора создаются различные типы микро-ЭВМ, контроллеров, программаторов и другие устройства автоматики и вычислительной техники.

2.1 Общая структура микропроцессора


А Л У - арифметико-логическое устройство. Оно обеспечивает выполнение основных операций по обработке информации.

Любую задачу компьютер разбивает на отдельные логические

операции, производимые над двоичными числами, причем в одну

секунду осуществляются сотни тысяч или миллионы таких опера-

ций. Сложение, вычитание, умножение и деление - элементарные

операции, выполняемые АЛУ ЭВМ. Полный набор таких операций называют системой команд, а схемы их реализации составляют основу АЛУ. Помимо арифметического устройства АЛУ включает и логическое устройство, предназначенное для операций, при осуществлении которых отсутствует перенос из разряда в разряд. Иногда эти операции называют логическое И и логическое ИЛИ. Все операции в АЛУ производятся в регистрах - специально отведенных ячейках АЛУ. Время выполнения простейших операций определяется минимальным временем сложения двух операндов, находящихся в регистрах. В случае, если одно или оба слагаемых находятся не в регистрах, а в запоминающем устройстве (ЗУ), учитывается также время пересылки слагаемых в регистры и время записи полученной суммы в ЗУ. В большинстве современных микропроцессоров это время составляет от нескольких сотен наносекунд до нескольких микросекунд.

УУ - устройство управления, управляет процессом обработки и обеспечивает связь с внешними устройствами.

РЕГИСТРЫ - внутренние носители информации микропроцессора. Это внутренняя память процессора. Регистров - три. Один хранит команды или инструкции, два других - данные. В соответствии с командами процессор может производить сложение, вычитание или сопоставление содержимого регистров данных.

2.2 Характеристики микропроцессоров

Микропроцессоры отличаются друг от друга двумя характе-

ристиками: типом (моделью) и тактовой частотой.

Наиболее распространены модели Intel-8088,80286, 80386SX,

80386(DX), 80486(SX, SX2,DX, DX2, DX4 и т.д.), Pentium и Pentium Pro

они приведены в порядке возрастания производительности и цены.

Одинаковые модели микропроцессоров могут иметь разную тактовую

частоту - чем выше тактовая частота, тем выше производительность и

цена микропроцессора.

Тактовая частота указывает, сколько элементарных опера-

ций (тактов) микропроцессор выполняет в одну секунду. Тактовая

частота измеряется в мегагерцах(МГц). Следует заметить, что

разные модели микропроцессоров выполняют одни и те же операции

(например, сложение или умножение) за разное число тактов. Чем

выше модель микропроцессора, тем меньше тактов требуется для

выполнения одних и тех же операций. Поэтому микропроцессор

Intel-80386 работает в два раза быстрее Intel-80286 с такой же

частотой.

2.3 Сопроцессоры.

Специализация сопроцессоров состоит в быстрой обработке чисел с плавающей запятой. Они могут выполнять как обычные операции сложения, вычитания, умножения и деления, так и более

сложные операции, такие как вычисление тригонометрических

функций

Конструктивно заложенные в микропроцессор сигналы, позволяют передавать работу сопроцессору и затем получать результаты обработки. Чтобы использовать арифметический сопроцессор, находящийся в составе компьютера, необходимы программы, которые могут выдавать специальные коды, необходимые для запуска сопроцессора.

Микропроцессоры 8088, 80286, 80386 сконструированы так, что они позволяют использовать арифметические сопроцессоры 8087, 80287, 80387 фирмы "Intel"-соответственно. Более поздние модели микропроцессоров имеют встроенные сопроцессоры.

2.4. Наиболее важные параметры МП

Структуры различных типов МП могут существенно различаться, однако с точки зрения пользователя наиболее важными параметрами являются архитектура, адресное пространство памяти, разрядность шины данных, быстродействие.

Архитектуру МП определяет разрядность слова и внутренней шины данных МП. Первые МП основывались на 4-разрядной архитектуре. Первые ПЭВМ использовали МП с 8- разрядной архитектурой, а современные МП основаны на МП с 16 и 32- разрядной архитектурой.

Микропроцессоры с 4- и 8-разрядной архитектурой использовали последовательный принцип выполнения команд, при котором очередная операция начинается только после выполнения предыдущей. В некоторых МП с 16-разрядной архитектурой используются принципы параллельной работы, при которой одновременно с выполнением текущей команды производятся предварительная выборка и хранение последующих команд. В МП с 32-разрядной архитектурой используется конвейерный метод выполнения команд, при котором несколько внутренних устройств МП работают параллельно, производя одновременно обработку нескольких последовательных команд программы.

Адресное пространство памяти определяется разрядностью адресных регистров и адресной шины МП. В 8-разрядных МП адресные регистры обычно составляются из двух 8-разрядных регистров, образуя 16-разрядную шину, адресующую 68 Кбайт памяти. В 16-разрядные МП, как правило, используются 20-разрядные адресные регистры, адресующие 1 Мбайт памяти. В 32-разрядных МП используются 24- и 32-разрядные адресные регистры, адресующие от 16 Мбайт до 4 Гбайт памяти.

Для выборки команд и обмена данными с памятью МП имеют шину данных, разрядность которой, как правило, совпадает с разрядностью внутренней шины данных, определяемой архитектурой МП. Однако для упрощения связи с внешней аппаратурой внешняя шина данных может иметь разрядность меньшую, чем внутренняя шина и регистры данных. Например, некоторые МП с 16-разрядной архитектурой имеют 8-разрядную внешнюю шину данных. Они представляют собой специальные модификации обычных 16 разрядных МП и обладают практически той же вычислительной мощностью.

Одним из важных параметров МП является быстродействие, определяемое тактовой частотой его работы, которая обычно задается внешними синхросигналами. Для разных МП эта частота имеет пределы 0,4...233 МГц и более. Выполнение простейших команд (например, сложение двух операндов из регистров или пересылка операндов в регистрах МП) требует минимально двух периодов тактовых импульсов ( для выборки команды и её выполнения ). Более сложные команды требуют для выполнения до 10 - 20 периодов тактовых импульсов. Если операнды находятся не в регистрах, а в памяти, дополнительное время расходуется на выборки операндов в регистры и записи результата в память.

Скорость работы МП определяется не только тактовой частотой, но и набором его команд, их гибкостью, развитой системой прерываний.

2.5 Команды микропроцессора

Арифметические операции - это такие операции, как

сложение, вычитание, умножение, деление и другие.

Логические операции - это такие операции, как

сравнение, отредактировать и отметить, логическое И и

логическое ИЛИ, исключение, проверка по маске и прочее.

Операции ввода-вывода - это такие операции, как начать,

остановить, опросить устройства ввода-вывода, опросить каналы

и так далее.

Операции переключения состояния - это такие операции,

как проверить и установить, загрузить реальные адреса и так

далее.

2.6 Основной алгоритм работы процессора

Процессор начинает работу после того, как программа записана в память ЭВМ, а в счетчик команд (СК) записан адрес первой

команды программы. Работу процессора можно описать следующим

циклом:

2НЦ

чтение команды из памяти по адресу, записанному в СК

увеличение СК на длину прочитанной команды

выполнение прочитанной команды

2КЦ

После чтения очередной команды процессор увеличивает СК на длину команды. Поэтому при следующем выполнении тела цикла процессор прочтет и выполнит следующую команду программы, потом еще одну и т. д. Цикл закончится, когда встретится и будет выполнена специальная команда "стоп". В итоге ЭВМ автоматически, без участия человека, команда за командой, выполнит всю команду целиком.

Автоматизм работы процессора, возможность выполнения

длинных последовательностей команд без участия человека - одна

из основных отличительных особенностей ЭВМ как универсальной

машины обработки информации.

3. БИС микропроцессоров

Среди отечественных БИС имеется три класса микропроцессорных БИС, отличающихся структурой, техническими характеристиками и функциональными возможностями: секционированные с наращиванием разрядности и микропрограммным управлением; однокристальные микропроцессоры и однокристальные микроЭВМ с фиксированной разрядностью и системой команд.

Вместе с периферийными БИС , выполняющими функции хранения и ввода-вывода данных , управления и синхронизации, сопряжения интерфейсов и. т. д., микропроцессоры составляют законченные комплекты БИС.

Секционированные микропроцессорные комплекты (МПК) допускают наращивание параметров (прежде всего разрядности обрабатываемых данных) и функциональных возможностей. Секционированные МПК ориентированы в основном на применение в универсальных и специализированных ЭВМ, контроллерах и других средствах вычислительной техники высокой производительности.

МПК на основе однокристальных микропроцессоров и однокристальные микроЭВМ, обладающие меньшей производительностью, но гибкой системой команд и большими функциональными возможностями, ориентированны на широкое применение в различных отраслях народного хозяйства.

4. Направления в производстве микропроцессоров

На данный момент существует два направления в производстве микропроцессоров. Они различаются в принципах архитектуры. первое направление - это процессоры RISC архитектуры; второе - CISC.

4.1 Микропроцессоры с архитектурой RISC

Микропроцессоры с архитектурой RISC(Reduced Instruction Set Computers) используют сравнительно небольшой (сокращённый) набор наиболее употребимых команд, определённый в результате статистического анализа большого числа программ для основных областей применения CISC - процессоров исходной архитектуры. Все команды работают с операндами и имеют одинаковый формат. Обращение к памяти выполняется с помощью специальных команд загрузки регистра и записи. Простота структуры и небольшой набор команд позволяет реализовать полностью их аппаратное выполнение и эффективный конвейер при небольшом объёме оборудования. Арифметику RISC - процессоров отличает высокая степень дробления конвейера. Этот прием позволяет увеличить тактовую частоту ( значит, и производительность ) компьютера; чем более элементарные действия выполняются в каждой фазе работы конвейера, тем выше частота его работы. RISC - процессоры с самого начала ориентированны на реализацию всех возможностей ускорения арифметических операций, поэтому их конвейеры обладают значительно более высоким быстродействием, чем в CISC - процессорах. В результате чего, RISC - процессоры в 2 - 4 раза быстрее имеющих ту же тактовую частоту CISC - процессоров с обычной системой команд и высоко производительней, несмотря на больший объем программ, на ( 30 % ). Дейв Паттерсон и Карло Секуин сформулировали 4 основных принципа RISC :

Любая операция должна выполняться за один такт, вне зависимости от ее типа.

Система команд должна содержать минимальное количество наиболее часто используемых простейших инструкций одинаковой длины.

Операции обработки данных реализуются только в формате “регистр - регистр“ ( операнды выбираются из оперативных регистров процессора, и результат операции записывается также в регистр; а обмен между оперативными регистрами и памятью выполняется только с помощью команд загрузки\записи ).

Состав системы команд должен быть “ удобен “ для компиляции операторов языков высокого уровня.

4.2 Микропроцессоры с архитектурой CISC

Микропроцессоры с архитектурой CISC (Complex Instruction Set Computers) - архитектура вычислений с полной системой команд. Реализующие на уровне машинного языка комплексные наборы команд различной сложности ( от простых, характерных для микропроцессора первого поколения, до значительной сложности, характерных для современных 32 -разрядных микропроцессоров типа 80486, 68040 и др.)

5. Обзор некоторых 16- и 32-разрядных микропроцессоров.

.

5.1. Процессоры фирмы Intel.

5.1.1. Первые процессоры фирмы Intel.

За 20-летнюю историю развития микропроцессорной техники, ведущие позиции в этой области занимает американская фирма Intel (INTegral ELectronics). До того как фирма Intel начала выпускать микрокомпьютеры, она разрабатывала и производила другие виды интегральных микросхем. Главной ее продукцией были микросхемы для калькуляторов. В 1971 г. она разработала и выпустила первый в мире 4-битный микропроцессор 4004. Фирма первоначально продавала его в качестве встроенного контроллера (что-то вроде средства управления уличным светофором или микроволновой печью). 4004 был четырех битовым, т.е. он мог хранить, обрабатывать и записывать в память или считывать из нее четырех битовые числа. После чипа 4004 появился 4040, но 4040 поддерживал внешние прерывания. Оба чипа имели фиксированное число внутренних индексных регистров. Это означало, что выполняемые программы были ограничены числом вложений подпрограмм до 7.

В 1972 г., т.е. спустя год после появления 4004, Intel выпустила очередной процессор 8008, но подлинный успех ей принес 8-битный микропроцессор 8080, который был объявлен в 1973 г. Этот микропроцессор получил очень широкое распространение во всем мире. Сейчас в нашей стране его аналог - микропроцессор KP580ИК80 применяется во многих бытовых персональных компьютерах и разнообразных контроллерах. С чипом 8080 также связано появление стека внешней памяти, что позволило использовать программы любой вложенности.

Процессор 8080 был основной частью первого небольшого компьютера, который получил широкое распространение в деловом мире. Операционная система для него была создана фирмой Digital Research и называлась Control Program for Microcomputers (CP/M).

5.1.2. Процессор 80286.

МИКРОСХЕМЫ МИКРОПРОЦЕССОРНОГО КОМПЛЕКТА 80286

80286 - однокристальный 16-разрядный МП

80287 - однокристальный 80-разрядный математический сопроцессор

82284 - генератор тактовых сигналов

82288 - системный контроллер

82289 - арбитр магистрали

Микропроцессор 80286 появился в 1982 году. При разработке были учтены достижения в архитектуре микрокомпьютеров и больших компьютеров. Процессор 80286 может работать в двух режимах: в режиме реального адреса он эмулирует микропроцессор 8086, а в защищенном режиме виртуального адреса (Protected Virtual Adress Mode) или P-режиме предоставляет программисту много новых возможностей и средств. Среди них можно отметить расширенное адресное пространство памяти 16 Мбайт, появление дескрипторов сегментов и дескрипторных таблиц, наличие защиты по четырем уровням привилегий, поддержку организации виртуальной памяти и мультизадачности. Процессор 80286 применяется в ПК PC/AT и младших моделях PS/2.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МП 80286

Тактовая частота.............………………....6; 8; 10; 12

Адресное пространство памяти:

физической, Мбайт........................………………...16

виртуальной на задачу, Гбайт.............……………..1

Число уровней защиты памяти...............…………..4

Пропускная способность шины, Мбайт/с......…12,5

Число контактов четырехразрядного корпуса.….68

5.1.3. Процессор 80386.

МИКРОСХЕМЫ МИКРОПРОЦЕССОРНОГО НАБОРА 80386

80386 - быстродействующий 32-разрядный МП с 32-разрядной внешней

80387 - быстродействующий математический сопроцессор

82384 - генератор тактовых сигналов

82358 - арбитр магистрали.

При разработке 32-битного процессора 80386 потребовалось решить две основные задачи - совместимость и производительность. Первая из них была решена с помощью эмуляции микропроцессора 8086 - режим реального адреса (Real Adress Mode) или P-режим.

В Р-режиме процессор 80386 может выполнять 16-битные программы (код) процессора 80286 без каких-либо дополнительных модификаций. Вместе с тем, в этом же режиме он может выполнять свои "естественные" 32-битные программы, что обеспечивает повышение производительности системы. Именно в этом режиме реализуются все новые возможности и средства процессора 80386, среди которых можно отметить масштабированную индексную адресацию памяти, ортогональное использование регистров общего назначения, новые команды, средства отладки. Адресное пространство памяти в этом режиме составляет 4 Гбайт.

Микропроцессор 80386 дает разработчику систем большое число

новых и эффективных возможностей, включая производительность от 3 до 4 миллион операций в секунду, полную 32-битную архитектуру, 4 гигабитное (2 байт) физическое адресное пространство и внутреннее обеспечение работы со страничной виртуальной памятью.

Микропроцессор реализован с помощью технологии фирмы Intel CH MOSIII - технологического процесса, объединяющего в себе возможности высокого быстродействия технологии HMOS с малым потреблением технологии кмоп. Использование геометрии 1,5 мкм и слоев металлизации дает 80386 более 275000 транзисторов на кристалле. Микропроцессор 80386 выпускается в двух вариантах, работающих на частоте I2 и I6 мгц без состояний ожидания, причем вариант 80386 на 16 мгц обеспечивает скорость работы 3-4 миллиона операций в секунду.

Микропроцессор 80386 разделен внутри на 6 автономно и параллельно работающих блоков с соответствующей синхронизацией. Все внутренние шины, соединяющие эти блоки, имеют разрядность 32 бит. Конвейерная организация функциональных блоков в 80386 допускает временное наложение выполнения различных стадий команды и позволяет одновременно выполнять несколько операций. Кроме конвейерной обработки всех команд, в 80386 выполнение ряда важных операций осуществляется специальными аппаратными узлами. Блок умножения/деления 80386 может выполнять 32-битное умножение за 9-41 такт синхронизации, в зависимости от числа значащих цифр; он может разделить 32-битные операнды за 38 тактов (в случае чисел без знаков) или за 43 такта (в случае чисел со знаками). Регистр группового сдвига 80386 может за один такт сдвигать от 1 до 64 бит. Обращение к более медленной памяти (и- ли к устройствам ввода/вывода) может производиться с использованием конвейерного формирования адреса для увеличения времени установки данных после адреса до 3 тактов при сохранении двухтактных циклов в процессоре. Вследствие внутреннего конвейерного формирования адреса при исполнении команды, 80386, как правило, вычисляет адрес и определяет следующий магистральный цикл во время текущего магистрального цикла. Узел конвейерного формирования адреса передает эту опережающую информацию в подсистему памяти, позволяя, тем самым, одному банку памяти дешифрировать следующий магистральный цикл, в то время как другой банк реагирует на текущий магистральный цикл.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МП 80386

Тактовая частота, МГц.................16, 20, 25, 33

Адресное пространство памяти:

физическое, Гбайт...................……………….4

виртуальное, Тбайт...................…………….64

Число уровней защиты..................…………...4

Пропускная способность шины, Мбайт/с....32

Число контактов корпуса с матричным

разложением выводов...................…………132

5.1.4. Процессор 80486.

МИКРОСХЕМЫ МИКРОПРОЦЕССОРНОГО НАБОРА 80486

80486 - быстродействующий 32-разрядный МП

82596СА - 32-разрядный сопроцессор LAN

82320 - контроллер магистрали Micro Chanel (MCA)

82350 - контроллер магистрали EISA

82С508 - микросхема программируемой логики, минимизирующая объем оборудования основной платы

В 1989 г. Intel представила первого представителя семейства 80х86, содержащего более миллиона транзисторов в чипе. Этот чип во многом сходен с 80386. Он на 100% программно совместим с микропроцессорами 386(ТМ) DX & SX. Один миллион транзисторов объединенной кэш-памяти (сверхбыстрой оперативной памяти), вместе с аппаратурой для выполнения операций с плавающей запятой и управлением памяти на одной микросхеме, тем не менее, поддерживают программную совместимость с предыдущими членами семейства процессоров архитектуры 86. Часто используемые операции выполняются за один цикл, что сравнимо со скоростью выполнения RISC-команд. Восьми килобайтный унифицированный кэш для кода и данных, соединенный с шиной пакетного обмена данными со скоростью 80/106 Мбайт/сек при частоте 25/33 МГерц гарантируют высокую производительность системы даже с недорогими дисками (DRAM). Новые возможности расширяют многозадачность систем. Новые операции увеличивают скорость работы с семафорами в памяти. Оборудование на микросхеме гарантирует непротиворечивость кэш-памяти и поддерживает средства для реализации многоуровневого кэширования. Встроенная система тестирования проверяет микро схемную логику, кэш-память и микро схемное постраничное преобразование адресов памяти. Возможности отладки включают в себя установку ловушек контрольных точек в выполняемом коде и при доступе к данным. Процессор i486 имеет встроенный в микросхему внутренний кэш для хранения 8Кбайт команд и данных. Кэш увеличивает быстродействие системы, отвечая на внутренние запросы чтения быстрее, чем при выполнении цикла чтения оперативной памяти по шине. Это средство уменьшает также использование процессором внешней шины. Внутренний кэш прозрачен для работающих программ. Процессор i486 может использовать внешний кэш второго уровня вне микросхемы процессора. Обычно внешний кэш позволяет увеличить быстродействие и уменьшить полосу пропускания шины, требуемую процессором i486.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МП 80486

Разрядность:

АЛУ 32

Шины данных 32

Адреса 32

Адресное пространство ОЗУ, Мбайт 40,96

Число команд 196

Кэш-память, Кбайт 8

Сопроцессор:Встроенный, 80387

Тактовая частота, МГц 20-33

Корпус микросхемы:

Число рядов 4

Число контактов 168

5.1.5. Обзор последующих процессоров фирмы Intel

Pentium - самые первые процессоры семейства P5 появились в далеком марте 1993-го. Тогда Intel, чтобы не повторить ошибки с i486 (суд отклонил иск к AMD по поводу названия) решила дать своему детищу имя, которое в последствие стало нарицательным. Первое поколение Pentium носило кодовое имя P5 он же 80501, напряжение питания 5 вольт, расположение выводов - "матрица" и работало на тактовых частотах 60 и 66 МГц, выпускаясь по 0.80-микронной технологии (правда стоит отметить, что частота шины у этих процессоров была равна частоте ядра). Выпускались они исключительно под Socket 4.

Следующим шагом в развитии этого семейства стал P54 он же 80502, напряжение питания 3.3 вольта, расположение выводов - "шахматная матрица". Появился ровно через год после P5. При его изготовлении использовался уже 0.50, а затем и 0.35-микронный технологический процесс. Тактовая частота находилась в пределах 75-200 МГц, а шина - 50-66 МГц. Объем-кэш памяти первого уровня - 16Кбайт, причем впервые был применен раздельный кэш - 8 Кбайт на данные и 8 Кбайт на инструкции. Форм-фактор - Socket 5. Архитектура IA32, набор команд не менялся со времен i386.

Pentium w/MMX technology - следующим большим шагов стал выпуск P55: процессора в котором впервые был реализован новый набор из 57 команд MMX. Произошло это 8 января 1997 года. С развитием технологии процессоры стали выпускаться по 0.35 мкм технологии. Изменилось напряжение питания (уменьшилось до 2.8 вольта), соответственно потребовались изменения в конструктивах системных плат - требовалась установка дополнительного стабилизатора напряжения. Объем кэш-памяти первого уровня был увеличен в два раза - 32 Кбайта. Внутрення тактовая частота составляла 166-233 МГц, а частота шины - исключительно 66 МГц. Рассчитан на Socket 7.

На этом развитие линейки Pentium для настольных компьютеров было прекращено.

Tillamook - процессор, изначально создавшийся для применения в ноутбуках. Благодаря усовершенствованному 0.25-микронному процессу удалось одновременно поднять тактовую частоту вплоть до 266 МГц, а также снизить напряжение ядра и рассеиваемую мощность. Таким образом, мобильные компьютеры встали в один ряд с настольными. Он является продолжением линейки Pentium и включает 32 Кбайта L1 кэша и набор команд MMX. Выпускался для работы на тактовых частотах от 133 до 266+ МГц с частотой шины 60-66 МГц. Тип упаковки: TCP и MMC (хотя существуют переходники для установки Tilamook в гнездо Super7). Появился 8 января 1997 года.

Pentium Pro - первый процессор шестого поколения. Довольно революционный для своего времени. В нем впервые Intel решилась применить кэш-память второго уровня, объединенную в одном корпусе с ядром и оперирующую на частоте процессора. Имел очень высокую себестоимость изготовления, которая так практически и не снизилась за все время его существования с 1 ноября 1995 года. Выпускался как по 0.50, так и по 0.35-микронной технологии. 0.35 мкм позволили увеличить объем кэша. Кэш второго уровня имел объем 256, 512, 1024 или 2048 Кбайт. Тактовая частота - от 150 до 200МГц. Частота системной шины - 60-66 МГц. Кэш первого уровня объемом 16Кбайт. Выпускался исключительно для Socket 8. Pentium Pro поддерживал все инструкции процессора Pentium (естественно, не MMX), а также ряд новых по сравнению с Pentium инструкций (cmov, fcomi, и т.д.). Введена двойная независимая шина (DIB). В дальнейшем все новшества унаследовал Pentium II (в свое время, задолго до своего выпуска, Klamath представлялся просто как Pentium Pro с добавлением MMX и улучшенной работой с 16-битными приложениями). Значительно опередил свое время.

Pentium II/III - семейство P6/6x86, первые представители появились в мае 1997 года. Объединяет общим именем процессоры, предназначенные для разных сегментов рынка. Pentium II (Klamath, Deschutes, Katmai и др.) для массового рынка ПК среднего уровня, Celeron (Covington, Mendocino, Dixon и др.) - для недорогих low-end компьютеров, Xeon (Xeon, Tanner, Cascades и др.) для высокопроизводительных серверов и рабочих станций. Имеет модификации для Slot 1, Slot 2, Socket 370, а также варианты в мобильном исполнении. Ниже мы рассмотрим каждое семейство в отдельности.

Klamath - самый первый процессор линейки Pentium II. Изготавливался по уже устаревшей 0.35-микронной технологии, а потому диапазон тактовых частот всего 233-300 МГц. Частота системной шины - 66 МГц, кэш-память второго уровня - 512 Кбайт. Последняя размещена на процессорной плате и работает на половине частоты процессора. Ранние модели выпускались как в варианте с 256 Кбайт, так и с 512 Кбайт кэша L2. Кэш первого уровня - 32 Кбайт. Дополнен MMX-блоком. Питание 2.8 В. Это также первый процессор для Slot 1 (картридж - SECC). Увидел свет 7 мая 1997 года.

Deschutes - дальнейшее развитие линейки Pentium II, усовершенствованная технология изготовления 0.25 микрон, питание - 2.0 В. Соответственно, удалось поднять тактовую частоту 266-450+ МГц, частота системной шины 66-100 МГц, кэш-память второго уровня 512 Кбайт размещена на процессорной плате, вышел 26 января 1998, Slot 1. Кэш первого уровня 32 Кбайта. Последнее ядро официально применявшееся в процессорах Pentium II, хотя последние модели Pentium II 350-450 шли с ядром, уже больше напоминавшим Katmai - только, естественно, с обрезанным SSE. Да и картридж тогда уже стал SECC2 (кэш с одной стороны от ядра (а не с двух, как в стандартном Deschutes, измененное крепление кулера.).

Tonga - очень интересный процессор. Его имя мне впервые встретилось при написании данного обзора. Дело в том, что Intel никогда не афишировала тот факт, что Mobile Pentium II, построенный на 0.25 микронном ядре Deschutes будет называться именно Tonga. Правда, особо удивляться тут нечему: это ведь всего лишь codename, а на рынок процессоры выходят совсем под другими именами. В любом случае он впервые появился 2 апреля 1998 года. Тактовая частота в диапазоне 233-300+ МГц, шина - стандартные 66 МГц. Выпускается как Mini Cartridge Connector и Mobile Module Connector 1 и 2 (MMC-1 и 2).

Katmai - Прямой наследник Deschutes. Изменения - добавлен блок SSE (Streaming SIMD Extensions), слегка расширен набор команд MMX, усовершенствован механизм потокового доступа к памяти. Техпроцесс 0.25 мкм, тактовая частота 450-600 МГц МГц, кэш-память второго уровня объемом 512 Кбайт размещена на процессорной плате Частота шины изначально составляла 100 МГц, но в сентябре 1999, в связи с задержкой Coppermine, вышли 533 и 600 МГц модели, рассчитанные на частоту системной шины 133 МГц.

Celeron - революционный в некотором смысле процессор: Intel наконец-то обратила внимание на массовый рынок недорогих компьютеров. В общем, это целое семейство недорогих процессоров как с кэшем второго уровня, так и без оного. В данный момент выпускались или выпускаются следующие его представители Covington, Mendocino, Dixon. Впервые появился в апреле 1998 года. Выпускается в вариантах для Socket 370, Slot 1.

Covington - первый процессор линейки Celeron. Построен на ядре Deschutes и выпускался по 0.25-микронной технологии. Тактовая частота 266-300 МГц, частота системной шины 66 МГц, кэш L1 - 32 Кбайта (по 16 Кбайт для данных и инструкций), кэш L2 отсутствует. Впервые появился 15 апреля 1998 года. Для уменьшения себестоимости выпускался без кэш памяти второго уровня и защитного картриджа. Питание - 2.0 В. Физический интерфейс - облегченный Slot 1 (SEPP - Single Edge Pin Package).

Mendocino - является развитием линейки Celeron. В отличие от своего предшественника имеет кэш-память второго уровня объемом 128 Кбайт, интегрированную на одном кристалле с ядром. Тактовая частота - 300-533 МГц, используемая частота системной шины - 66 МГц. Технологический процесс - 0.25 мкм, для Socket-

Подобные работы:

Актуально: