Колебания. Правила сложения колебаний

КОЛЕБАНИЯ. ПРАВИЛА СЛОЖЕНИЯ КОЛЕБАНИЙ

 

 

Содержание

Определение колебаний. *

Графический метод сложения колебаний. Векторная диаграмма. *

Методом вращающегося вектора амплитуды. *

Сложение взаимно перпендикулярных колебаний. *

Сложение колебаниё одного направления и одинаковой частоты. *

Различные формы траектории суммы колебаний. Фигуры Лиссажу. *

 

                                       

 

Определение колебаний.

Колебаниями называются движения или процессы, которые полностью или почти полностью повторяются через равные промежутки времени. Колебания, описываемые уравнением

,

где x – смещение колеблющийся величины от положения равновесия; w - циклическая частота, определяющая число колебаний, совершаемые за время 2 π секунд;t - время

называют гармоническими

Графический метод сложения колебаний. Векторная диаграмма.

Методом вращающегося вектора амплитуды.

Метод вращающегося вектора амплитуды заключается в представлении гармонического колебания с помощью вектора, длина которого равна амплитуде колебания, а направление образует с осью x угол, равный начальной фазе колебаний называют методом вращающего вектора амплитуды

Гармонические колебания одинакового направления и частоты удобно складывать, изобразив колебания в виде векторов на плоскости - графически

1). Выберем некоторую направленную прямую - ось, вдоль которой будем откладывать колеблющуюся величину x

2). Из взятой на оси некоторой точки О отложим направленный отрезок - вектор длины A, образующий с осью угол некоторый α

3). Вращая вектор А вокруг точки О с угловой скоростью ω 0 , получим, что проекция конца вектора на ось будет совершать гармонические колебания с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени: проекция конца вектора будет перемещаться по оси x, принимая значения от - А до + A , а координата этой проекции будет изменяться со временем по закону

Схему, полученную таким методом представления колебаний, называют векторной диаграммой

 

Сложение взаимно перпендикулярных колебаний.

Рассмотрим две взаимно перпендикулярные векторные величины x и y , изменяющиеся со временем с одинаковой частотой ω по гармоническому закону:

(1)

Где e x и e у — орты координатных осей x и y, А и B — амплитуды колебаний. Величинами x и у может быть, например, смещения материальной точки (частицы) из положения равновесия

В случае колеблющейся частицы величины x и y можно представить в виде:

, (2)

Они определяют координаты частицы на плоскости xy.

Выражения (2) представляют собой заданное в параметрической форме уравнение траектории, по которой будет двигаться частица. Вид траектории зависит от разности фаз обоих колебаний

Исключив из уравнений (2) параметр t, получим уравнение траектории в обычном виде. Из первого уравнения: (3). Соответственно (4)

По формуле для косинуса суммы:

, тогда

Преобразуем это уравнение

(5)

Получили уравнение эллипса, оси которого повернуты относительно координатных осей х и у. Ориентация эллипса и его полуоси зависят довольно сложным образом от амплитуд A и В и разности фаз α

Сложение колебаниё одного направления и одинаковой частоты.

Рассмотрим сложение двух гармонических колебаний х 1 и x 2 одного направления и одинаковой частоты:

, (1)

Оба колебания представим с помощью векторов A 1 и А 2 . Используя правила сложения векторов можно найти результирующий вектор А, представляющий собой сумму двух векторов A 1 и А 2

Вектор A представляет собой результирующее колебание, потому что из рисунка видно, что проекция этого вектора на ось x равна сумме проекций складываемых векторов:

Вектор A вращается с той же угловой скоростью ω 0 , как и векторы А 1 и А 2 , так что сумма x 1 и х 2 является гармоническим колебанием с частотой (ω 0 , амплитудой A и начальной фазой α . Используя теорему косинусов получаем, что

 

(2)

(3)

Замена сложения функций сложением векторов, которая возможна при Представление гармонических колебаний с помощью векторов, значительно упрощает вычисления

 

 

Различные формы траектории суммы колебаний. Фигуры Лиссажу.

  1. Разность фаз α равна нулю.

При разности фаз, равной нулю, уравнение (5) упрощается следующим образом:

Отсюда :

- уравнение прямой

Результирующее движение является гармоническим колебанием вдоль этой прямой с частотой ω и амплитудой, равной (рис. 1 а)

  1. Разность фаз α равна ±π.

При разности фаз α равной ±π уравнение (5) имеет вид

- результирующее движение представляет собой гармоническое колебание вдоль прямой

(рис. 1 б)

 

       

Рис.1

 

  1. Разность фаз равна

.

Случаи и отличаются направлением движения по эллипсу или окружности

При разности фаз, равной .уравнение (5) переходит в уравнение эллипса, приведенного к координатным осям:

Полуоси эллипса равны соответствующим амплитудам колебаний. Если амплитуды А и В равны, эллипс превращается в окружность

Равномерное движение по окружности радиуса R с угловой скоростью ω может быть представлено как сумма двух взаимно перпендикулярных колебаний:

,

(знак плюс в выражении для у соответствует движению против часовой стрелки, знак минус — движению по часовой стрелке)

При разных частотах взаимно перпендикулярных колебаний, траектории результирующего движения будут имеют вид сложных кривых, называемых фигурами Лиссажу

 

         

Фигура Лиссажу для

отношения частот 1:2 и

разности фаз π/2

Фигура Лиссажу для отношения частот 3:4 и разности фаз π /2



Подобные работы:

Актуально: