Пищеварительный тракт и его основные функции
ПИЩЕВАРИТЕЛЬНЫЙ ТРАКТ И ЕГО ОСНОВНЫЕ ФУНКЦИИПри непрерывно протекающих в организме процессах обмена веществ и энергии требуется постоянное расходование питательных веществ. Поскольку внутренние ресурсы организма ограничены, для поддержания жизнедеятельности, здоровья и продуктивных качеств животных необходимо поступление питательных веществ в составе корма
Основные компоненты корма - белки, жиры, углеводы, витамины, минеральные вещества, вода. В нативном (неизменном) виде животными, могут быть усвоены только вода, растворимые минеральные соли и витамины
Белки, жиры и углеводы (полисахариды) , представляющие собой высокомолекулярные соединения, не проникающие через поры животных мембран, предварительно должны быть переработаны до относительно простых молекул. Нерастворимые минеральные соли и витамины в процессе пищеварения превращаются в растворимые формы
Пищеварение - это совокупность механических, физико-химических и биологических процессов, обеспечивающих расщепление поступивших с кормом сложных питательных веществ на относительно простые соединения (блоки) , которые могут быть ассимилированы организмом
Пищеварение начальный этап ассимиляции питательных веществ, за которым следует промежуточный обмен веществ и выделение продуктов метаболизма почками
Процесс пищеварения происходит в системе органов пищеварения, или пищеварительном тракте, который условно разделяют на три отдела: передний, средний и задний. К переднему отделу относят ротовую полость с вспомогательными органами, глотку и пищевод, к среднему - желудок и отдел тонких кишок, к заднему - отдел толстых кишок
Пищеварительный тракт включает также застенные пищеварительные железы - слюнные, поджелудочную и печень, секреты которых изливаются в просвет желудочно-кишечного тракта
Передний отдел пищеварительного тракта служит для захватывания, пережевывания, смачивания и проглатывания корма, средний отдел является основным местом химической переработки корма и всасывания продуктов гидролиза, в заднем отделе происходит обработка непереваренных остатков корма, всасывание воды и формирование фекалий
Стенка пищеварительного канала на всем протяжении от пищевода до прямой кишки представлена четырьмя слоями: слизистой оболочкой, слоем гладких мышц, подализистой и серозной оболочкой, которая образована в основном брюшиной. Компоненты пищеварительных соков синтезируются секреторными клетками желез, расположенных в слизистой оболочке полости рта, пищевода, желудка и кишечника, а также клетками застенных пищеварительных желез
Хотя общие принципы пищеварения одинаковы для всех видов домашних животных, структура и форма отделов их пищеварительного тракта существенно различаются, что обусловлено характером питания. Это подтверждается данными таблицы, где приведены сведения о размерах желудка, отделов тонких и толстых кишок у плотоядных, всеядных и травоядных животных
Табл. Объем разных отделов желудочно-кишечного тракта у животных
| Общий объем | желудок | тонкий к-к | толстый к-к |
Корова | 200 - 300 | 71 | 18 | 11 |
Лошадь | 100 - 180 | 10 | 30 | 60 |
Овца (коза) | 25 - 32 | 65 | 23 | 12 |
Свинья | 22 - 30 | 30 | 35 | 35 |
Собака | 2 - 3 | 63 | 23 | 14 |
Кошка | 0,4 - 0,6 | 66 | 18 | 16 |
Кролик | 0,5 - 0,8 | 25 | 32 | 43 |
В пределах каждого вида абсолютные показатели (л) могут существенно варьировать в зависимости от массы животных, возраста, типа кормления, однако соотношение отделов довольно постоянное
У растительноядных животных (коров, овец, лошадей, кроликов) хорошо развиты отделы, в которых происходит переработка клетчатки с участием микроорганизмов - преджелудки и толстый кишечник (в основном слепая кишка) . Плотоядные имеют желудочно-кишечный тип пищеварения. Потребляемая ими белковая и жировая пища переваривается в основном в желудке и отделе тонких кишок, относительный объем желудка велик. У всеядных (свиньи) все отделы желудочно-кишечного тракта развиты более-менее равномерно, но основная роль в переваривании корма принадлежит кишечнику, имеющему большие объем и протяженность, чем у плотоядных
Наряду с функциями временного хранения корма, его расщепления (переваривания) , абсорбции питательных веществ, перемещения и выбрасывания непереваренных остатков пищеварительный тракт выполняет экскреторную, обменную, синтетическую (с участием микроорганизмов) и инкретoрную функции
Специальными эндокринными клетками слизистой оболочки и тонкого кишечника секретируются биологически активные полипептиды, регулирующие выделение пищеварительных секретов. Некоторые из этих пептидов (гастрин, секретин, холецистокинин) относят к Истинным гормонам, другие - к “кандидатам в гормоны” . Число аминокислотных остатков в их структуре - от 17 до 43, молекулярная масса от 2000 до 5ООО
Здесь же вырабатываются некоторые регуляторные гипоталамические пептиды, например соматостатин, нейротензин, вещество Р, пищеварительная функция которых остается недостаточно ясной
Сущность пищеварения
Механические процессы приводят к изменению структуры и физических свойств корма плотности, консистенции, размеров частиц и т.п. Это является следствием пережевывания, сокращения мышц желудочно-кишечного тракта, воздействия жидкой части пищеварительных соков
Физико-химические процессы (например, действие соляной кислоты в желудке или поверхностно-активных веществ желчи в кишечнике) способствуют набуханию частиц корма, увеличению их поверхностного натяжения, активации ферментов, повышению растворимости солей
Биологические процессы - это процессы последовательного ферментативного гидролиза пищевых полимеров сначала до промежуточных продуктов, а затем до мономеров при постепенном перемещении корма по отделам желудочно-кишечного тракта
Ферментативная система пищеварительного тракта включает в себя: а) ферменты пищеварительных секретов, выделяемых внутристенными или застенными пищеварительными железами; б) ферменты, образуемые микроорганизмами пищеварительного тракта; в) ферменты, содержащиеся в растительных кормах
Основную роль у животных с однокамерным желудком выполняют гидролазы пищеварительных секретов. Они характеризуются специфичностью субстратной и действия, оптимумом температуры и рН. Каталитическое действие этих гидролаз основано на присоединении к сложному субстрату молекулы воды по типу: АВ+ Н*ОН <=> A* ОН+ НВ Равновесие в этой реакции постоянно сдвигается в правую сторону, поскольку одновременно с гидролизом идет процесс всасывания образовавшихся продуктов
В переваривании белков участвуют протеазы (эндо- и экзопептидазы) , углеводов - карбогидразы (амилаза, глюкозидаза, инвертаза, галактозидаза) , нуклеиновых кислот - нуклеазы (рибонуклеаза, дезоксирибону- клеаза) , жиров - карбоксилэстеразы (липаза, фосфолипаза, холинэстераза) . Конечными продуктами гидролиза питательных веществ являются мономеры: при гидролизе белков - аминокислоты, жиров - жирные кислоты и глицерин, углеводов - простые гексозы, главным образом глюкозы. Нуклеиновые кислоты расщепляются до пуринов, пииримидииов, рибозы, дезоксирибозы и фосфата. У жвачных животных конечные метаболиты могут быть иными
Установлена тесная зависимость спектра и активности пищеварительных ферментов от характера питания животных
Так, у плотоядных и хищных преобладают протеазы, у растительноядных - карбогидразы. Спектр ферментов меняется и с возрастом животных, что обусловлено сменой условий питания
В целом для моногастричных животных характерны первоначальный ферментативный гидролиз корма в кислой среде (желудок) и последующий гидролиз с всасыванием в нейтральной или слабокислой среде (отдел тонких кишок)
Микробиальная переработка корма (тоже ферментативная) осуществляется бактериями и простейшими, населяющими разные отделы желудочно-кишечного тракта
Эти процессы особенно интенсивно протекают у жвачных животных в преджелудках, в меньшей степени у лошадей и кроликов в слепой и ободочной кишках. Тип пищеварения с активным участием микроорганизмов называется симбионтным. При этом микроорганизмы с помощью ферментов расщепляют и утилизируют поглощаемые хозяином пищевые компоненты корма, а сам хозяин использует продукты жизнедеятельности микроорганизмов, а также вторичную пищу, состоящую из структур симбионтов. Последнее относится в основном к жвачным животным
Жвачные значительно лучше переваривают питательные вещества, корма, особенно клетчатку, чем свиньи и кролики. Различия между овцой и лошадью незначительны, но они существенно возрастают при использовании низкокачественного растительного корма с высоким содержанием клетчатки (грубого сена, соломы)
Вместе с тем показано, что бактериальная переработка корма в преджелудках жвачных не дает никаких преимуществ в сравнении с ферментативным перевариванием при использовании низкоклетчатого высокобелкового рациона
Промежуточный обмен веществ - это совокупность химических превращений, которым подвергаются питательные вещества после их всасывания из пищеварительного канала и до выделения продуктов обмена из организма
Эти превращения осуществляются главным образом внутри клеток, с участием ферментов, контролируемых генами. В результате организм получает необходимые вещества и энергию для процессов жизнедеятельности, роста и образования продукции (молока, мяса, яиц)
Определенная последовательность химических реакций, обеспечивающих превращение тех или иных питательных веществ в необходимые организму компоненты, называется метаболическим путем, а образующиеся промежуточные или конечные продукты метаболитами
Различают две стороны промежуточного обмена: анаболизм и катаболизм. Анаболизм (от греч. anabole - подъем) - это совокупность процессов синтеза сравнительно крупных клеточных компонентов, а также биологически активных соединений из простых предшественников
Метаболизм Анаболизм Катаболизм Биосинтез Распад Небольшие~> Большие молекулы Большие -> Небольшие молекулы Энергия поглощается Энергия освобождения Неупорядоченность уменьшается Неупорядоченность возрастает Часто имеет восстановительный Часто имеет окислительный характер. Примеры Глюконеогенез Гликолиз Синтез жиров Липолиз Синтез белков Протеолиз Эти процессы ведут к усложнению структуры клеток и связаны с затратами свободной энергии (эндергонические процессы) . Катаболизм - совокупность процессов ферментативного расщепления сложных молекул, как поступивших с кормом, так и образовавшихся в организме до простых компонентов. Эти процессы обычно осуществляются за счет реакций окисления, с освобождением свободной энергии (экзергонические процессы) . Обе стороны промежуточного метаболизма тесно взаимосвязаны во времени и пространстве, хотя и не являются повторением друг друга
Процессы промежуточного обмена строго специфичны и дифференцированы. Они специфичны не только в разных тканях и клетках, но и в cубклеточных структурах, что обусловлено наличием в последних специальных ферментных систем. Так, ферменты, катализирующие образование матричной РНК, локализованы в ядре, ферменты тканевого дыхания, окислительного фосфорилирования, цикла трикарбоновых кислот - в митохондриях, ферменты белкового синтеза - в рибосомах, гидролитические ферменты - в лизосомах и т.д
Такая “привязка” ферментных систем к определенным структурам клетки (компартментализация) обеспечивает как обособленность внутриклеточных реакций, так и их интеграцию
В процессе промежуточного обмена происходит, с одной стороны, дальнейшее расщепление всосавшихся в пищеварительном тракте блоков аминокислот, глюкозы, глицерина и жирных кислот, а с другой стороны синтез свойственных организму белков, углеводов, жиров и их комплексов - нуклеопротеидов, фосфолипидов и т.д
Изучение динамики химических превращений, осуществляемых на клеточном и молекулярном уровнях, является задачей биологической химии. Физиология же обмена веществ рассматривает общие закономерности и регуляцию обмена белков, углеводов, липидов, неорганических соединений, пластические и энергетические затраты организма при разном физиологическом состоянии и способы возмещения этих затрат
Для изучения промежуточного обмена используют как общие физиологические методы, описанные в разделе (метод изолированных органов, ангиостомию, биопсию) , так и специальные методы. Среди последних заслуживает внимания метод меченых атомов, основанный на использовании соединений, в молекулы которых включены атомы тяжелых или радиоактивных изотопов биоэлементов. Вводя в организм соединения, меченные такими изотопами, и используя радиометрические или масс-спектрометрические методы анализа проб тканей и экскретов, можно проследить за судьбой элемента или соединения в организме, его участием в метаболических процессах