Усилитель вертикального отклонения осциллографа
Министерство общего и профессионального образования РФУральский государственный технический университет
Кафедра ФМПК
РАСЧЁТ ЭЛЕКТРОННОГО УСИЛИТЕЛЯПояснительная записка19.02 520000 012 ПЗ
Студент: Лебедев В.В.
Руководитель: Стрекаловская З.Г.
Н. Контролёр Замараева И.В.
Группа: ФТ-429
Екатеринбург1998 г.
СодержаниеСтр.
- Введение 3
- Техническое задание 3
- Справочные данные на элементы 4
- Структурная схема усилителя 5
- Расчёт входного делителя 6
- Расчёт предусилителя 7
- Расчёт фазоинвертора 9
- Расчёт оконечного каскада 11
- Расчёт граничных частот 15
- Заключение 16
- Библиографический список 17
- Приложения 18
Согласно техническому заданию, требуется спроектировать и рассчитать широкополосный электронный усилитель, работающий на симметричную нагрузку, обеспечивающий на выходе усиленный входной сигнал с допустимыми искажениями
Техническое задание.Входной сигнал:
Экспоненциальный импульс отрицательной полярности.
Uвх=(10÷500)мВ
τи=5мкс
Выходной сигнал:
Uвых=250В
Нагрузка:
Rн=250кОм
Входное сопротивление:
Rн>100кОм
Элементная база:
Использовать ИМС.
Диапазон температур:
T=(20±20)0C
Справочные данные на элементы.
Микросхемы
Микросхема 140УD5А
UUпит=±12В
КуU=1500÷125000
Rвх=100кОм
Rвых<1кОм
f1=15мГц
Uвых<±4В
Микросхема 140УD10
UUпит=±(5÷16)В
КуU=50
Rвх=1мОм
Rвых<1кОм
f1=15мГц
Транзистор 2Т888А
UКЭмах=900В
α=0.976
β=40
fв=15мГц
Uвых<±10В
IКб0<10мкА
IКмах=100мА
PКмах=7Вт (с теплоотводом)
Ск=45пФ
Тип p-n-p
Структурная схема усилителяИсходя из технического задания, была выбрана структурная схема усилителя рис.1
Структурная схема усилителя
Uвх Входной Предусилитель
Делитель
Фазоинвертор Оконечный
каскад
Рис.1
Входной делитель даёт возможность делить входной сигнал в соотношениях 1:1, 1:10, 1:50.
Предусилитель обеспечивает большой коэффициент усиления при минимальных искажениях.
Фазоинвертор обеспечивает на выходе одинаковые по модулю и разные по фазе напряжения.
Оконечный каскад обеспечивает усиление мощности сигнала для эффективного управления нагрузкой. Так как он вносит в сигнал максимальные искажения, то его коэффициент усиления этого каскада выбирают небольшим.
Входной делитель
С1
R1
C2 R2 C3 R3
Рис №2
Зададимся
R1=100кОм
С1=220пФ
K1= 0.1 ( коэффициент деления 1:10)
K2=0.02 ( коэффициент деления 1:50)
C1R1= C2R2= C3R3
R2=R1*K1/(1-K1)
R3=R1*K2/(1-K2)
R2=11кОм
R3=2кОм
Рассчитаем СI
Пусть С1=220пФ
Тогда С2=С1*R1/R2=2нФ
С3=С1*R1/R3=10.8 нФ
Номинальные значения:
R2=11кОм С2=2 нФ
R3=2кОм С3=11 нФ
Предварительный усилительC1 DA1 C2 DA2 C3 DA3
+ + +
- - -
R2 R4 R6 R7
R1 R3 R4
Рис. 3
Первый и второй каскад (DA1,DA2) предусилителя идентичны и построены на ОУ 140УД5А
Расчёт ведем для одного каскада.
Коэффициент усиления ОУ определяется по формуле:
Возьмём коэффициент усиления DA1 и DA2 K01*=16
Возьмем R1=10 кОм
Тогда: R2=R1(K0-1)= 150кОм
Верхняя граничная частота при K0=16, fВ=5МГц (справ. данные)
Нижняя граничная частота при C1=1мкФ
Возьмём С4=С5=1 мкФ R7=100кОм R6=33кОм
Третий каскад (DA3) предусилителя построен на ОУ 140УД10
В последним третьем каскаде введена регулировка коэффициента усиления всего усилителя. Зададимся условием чтобы его минимальный коэффициент усиления был равен: К0=3 он зависит от величен сопротивлений R5 и R6
При R5=10кОм и R6=20кОм коэффициент усиления составит K0min=3
Пусть максимальный коэффициент усиления составит K0мах=4
Следовательно R7=R5(K0min-1)-R6=10кОм
Верхняя граничная частота при K0=4, fВ=5МГц (справ. данные)
Нижняя граничная частота при C3=1мкФ
Параметры всего ПУ
Коэффициент усиления всего ПУ: K0=K01K02K03
K0max=K01K02K03=1024
K0min=K01K02K03=768
Верхняя граничная частота:
FВПУ=2.9 МГц
Нижняя граничная частота
fн= f1+f2+f3=5Гц
Расчёт фазоинвертора:С2 DA1
+
-
Вх
R2
C1 R1 DA2
-
+
Рис. 4
Фазоинвертор построен на 2x- ОУ 140УД10
DA1- включен как повторитель
DA2 - включен как инвертор
Коэффициент усиления повторителя К01=1
Коэффициент усиления инвертора К02≈1 когда R2<
Пусть R1=10кОм и R2=1кОм ⇒ K02≈1
Для обеспечения симметричного выхода сделаем R2 – переменным сопротивлением
Верхняя граничная частота для 140УD10 – равна 15МГц
Нижняя граничная частота равна:
Необходимо чтобы FН1=FН2 (нижние граничные частоты обоих плеч были одинаковые )
Вожмём С1=1мкФ тогда:
Т.К. RВХповт=RВхоу=1 МОм=100R1,
то чтобы FН1= FН2 следует взять С2=0,01C1=0.01 мкФ
Расчёт оконечного каскадаR1 Rк
Cc2 Cc4
Cc1 Cc3
VT1 VT2
R2 Rэ
CЭ Rэоб
Рис. 5
Принципиальная схема оконечного каскада изображена на рис.3
Поскольку у нас симметричная нагрузка то будем вести расчёт на одно плечо.
Уравнение линией нагрузки будет выглядеть следующим образом:
IКмах=40мА
Динамическая линия нагрузки транзистора
I мА
40
Р.Т.
20
0 100 350 700 UкэВ
Рис. 4
Возьмем RЭ=4кОм и RК=13.5кОМ
Рабочая точка: IК0=20мА UКЭ0=350В
Найдем рассеиваемую мощность
PRк=5.4Вт и PRэ=I2Э0*RЭ=1.7Вт
Произведём расчёт базового делителя:
Пусть Iдел=5мА
UЭ0= IЭ0*RЭ=20мА*4кОм=82В - напряжение на эмиттере
UБ0= UЭ0*UБЭ=82.5В - напряжение на базе
R2= UБ0/Iдел=16400≈16 кОм
R1=112272 Ом≈110 кОм
RБ≈14кОм
Найдём коэффициент термонестабильности NS=1+RБ/RЭ=4,6
Определим крутизну
S=IК0/м*φт=256мА/В
Рассчитаем gэкв
gК=1/RК=1/13.5=7.4*10-5 Cм
gн=1/Rн=4*10-6 Cм
gi=h22=(1+β)IКбо/UКэо=1.177*10-6 Cм
gэкв=gi+gн+gк=7.93*10-5 Cм
Рассчитаем коэффициент усиления
KO=S/gэкв=3228
Введём О.О.С. разделив сопротивление RЭ
Пусть K0*=30 тогда K0*= K0/1+γ*K0
γ=RЭ/RК=0.033 RЭ - сопротивление О.О.С.
RЭ=γ* RК=445Ом ⇒ RЭ1=RЭ-RЭ≈4кОм-430Ом≈3,6кОм
F=1+γ*K0=107.5 – глубина обратной связи
Входная проводимость:
G11= IК0/м*φт*β=6.4*10-3
φт – тепловой потенциал
rвх =1/g11=156 Ом
rэ=φт/IЭо=1.27Ом
сопротивление базы транзистора
rБ=rвх-βrЭ=105Ом
Расчёт по переменному току:
Найдём нижнюю частоту
Расчёт граничных частотРассчитаем верхнюю частоту всего усилителя по формуле:
Обеспечим при этом длительность фронта равной:
τФ=0.35/fВ=0.34 мкс
что для τИ=5мкс составляет менее 7%
Рассчитаем нижнюю частоту всего усилителя по формуле
fн= fнпр+fнфаз+fнокон=5+16+260=281Гц
Для предварительного усилителя
τнпр=С4*Rвх=0.1с
fнпр= 1/(2π*τнпр)=1.6 Гц
Для фазоинвертора
τнфи=С7*R10=0.01с
fнфи= 1/(2π*τнфи)=16 Гц
Для предоконечного каскада
τнпре=С8*Rвх=1с
fнпре= 1/(2π*τнпре)=0.2 Гц
Для оконечного каскада
fнокон=260 Гц
RЭоб=0.5RЭ1=1780Ом
Расчет транзисторов на мощность
Обозначение | Рассеиваемая мощность | Примечания |
R1 | 0.0625 мкВт | |
R2 | 0.625 мкВт | |
R3 | 2,5 мкВт | |
R4 | 17мкВт | |
R5 | 5мкВт | |
R6 | 0.272мВт | |
R7 | 80мкВт | |
R8 | 0.435мВт | |
R9 | 1.7мВт | |
R10 | 10мВт | |
R11 | 0,14Вт | |
R12 | 0.18Вт | |
R13,R20 | 0.91Вт | |
R14,R21 | 0.4Вт | |
R15,R19 | 5.4Вт | Необходим радиатор |
R16,R18 | 1.7Вт | |
R17 | 1Вт |
В ходе данной работы был спроектирован электронный усилитель, позволяющий усиливать переменное напряжение. Параметры данного усилителя соответствуют техническим требованиям.
Библиографический список.1. Полупроводниковые приборы. Транзисторы средней и большой мощности. Справочник. Под.ред. А.В.Голомедова. Москва,; Радио и связь, 1994
2. Интергральные микросхемы. Операционные усилители. Справочник. Москва,; ВО “Наука”,1993.