Логика неопределенности и неопределенности во времени
Анкин Д.В.
В классической логике высказываниями называют предложения, которые оцениваются либо как истинные, либо как ложные, но не то и другое одновременно. Даже если для конкретного высказывания ни один из людей не в состоянии доказательно обосновать его истинность или ложность, высказывание считается объективно имеющим одну, и ровно одну, из указанных истинностных характеристик. Например, знаменитая гипотеза Ферма в настоящее время является таким высказыванием. Но остается надежда, что ответ на вопрос об истинности или ложности данного высказывания может быть получен в будущем. И, хотя у нас нет и быть не может (согласно одной из ограничительных теорем К. Геделя) эффективного метода перечисления арифметических истин, каждое арифметическое высказывание считается наделенным одним из двух истинностных значений безотносительно к тому, умеет или нет познающий субъект это значение установить.
Сказанное касается не только арифметики и даже не только математики, а относится к любым предметным областям вообще. Классическая логика распространяет принцип бивалентности на любой универсум рассуждений: всякое высказывание, о чем бы оно ни было, является либо истинным, либо ложным, но не тем и другим сразу. Если же некоторое предложение, по виду напоминающее высказывание, не имеет одной из двух возможных истинностных характеристик, то это не высказывание, а бессмысленное выражение.
Такой подход, развиваемый классической логикой, влечет определенные представления о реальности. Извинимся за невольный каламбур: высказав это утверждение, далее следовало бы сказать, что данные определенные представления основываются на идее тотальной определенности всего сущего. Но так оно и есть. Классическая логика принимает фундаментальную онтологическую предпосылку об определенности реальности любого рода. Не потому реальность определенна, что высказывания о ней всегда либо истинны, либо ложны, а, наоборот, высказывания всегда либо истинны, либо ложны потому, что реальность полностью определенна. Если возникают проблемы с определенностью высказываний, то ответственность за это возлагается не на описываемую ими предметную область, а на эти высказывания. Предложение “Сократ сидит” лишь по виду высказывание. Оно не истинно и не ложно, ибо иногда Сократ сидит, а иногда нет. В полностью определенном универсуме классической логики необходимо указать момент (или интервал) времени, в который происходит описываемое событие: “Сократ сидит в момент времени t ”. А это уже матрица для получения высказываний, истинных для одних конкретных моментов времени и ложное для других. Теперь высказывание типа “Сократ сидит 1 мая 399 г. до н. э. в 8 часов 5 минут 16 секунд” навечно либо истинно, либо ложно, даже если никто ни сейчас, ни когда-либо в будущем не сможет надежно установить его истинность или ложность.
Мы с легкостью смиряемся с идеей определенности событий прошлого. Другое дело, что предикаты событий могут требовать уточнения. В рассматриваемом случае слово “сидит” двусмысленно: Сократ в мае 399 г. до н. э. находился в тюрьме (“сидел”, так сказать), но мог в некоторый момент этого интервала времени сидеть или не сидеть в смысле занятой им позы. Но двусмысленности всегда можно устранить. А уж если при этом указано еще точное время и место свершения события, то последние сомнения в его определенности отпадают. Таково господствующее мнение.
Мало кто задумывается, что уточнения пространственно-временных характеристик событий прошлого могут вести к недопустимому переходу от заведомо истинных высказываний к весьма проблематичным суждениям. Утверждения “Заратустра основал зороастризм в VI в. до н. э.” и “Заратустра основал зороастризм в XVI в. до н. э.” не могут быть вместе истинными, но каждое принимается каким-либо специалистом. Следовательно, от практически несомненного “Заратустра основал зороастризм” приходим к определенным во времени, но сомнительным утверждениям, поскольку “расхождения в датировке, достигающие у современных исследователей тысячи лет и более, отражают и подчеркивают то обстоятельство, что в дошедших до нас источниках нет надежных конкретных данных для определения времени жизни Заратуштры” (9. С. 289). Вряд ли нужно настаивать, что затруднения подобного рода в высшей степени характерны для исторического познания, занимающегося изучением универсума прошлого.
Сомнения в определенности будущего возникали и возникают гораздо чаще. Еще основатель логики Аристотель столкнулся с проблемой истинностной оценки высказываний о случайных будущих событиях. В подтверждение сказанного обратимся к знаменитому фрагменту из трактата Аристотеля «Об истолковании» – главе 9, в которой обсуждается проблема эпистемологического статуса высказываний о будущих случайных событиях (5). Этот небольшой аристотелевский текст вызвал появление несоизмеримо большого числа статей и даже книг, посвященных анализу содержащихся в нем идей. (См., напр., (11). Здесь же можно найти библиографию по рассматриваемому вопросу.) В чем причина такого интереса к фрагменту? Скорее всего, в том, что эти идеи совершенно не вписываются в господствующую логическую парадигму, основанную на статической концепции времени, в которой время по сути полностью определенно и неизменно во всех его частях (1). Аристотель же, вне всяких сомнений, был сторонником динамической концепции, утверждающей, в частности, нефиксированность (и потому неопределенность) будущего (1. С. 36-37).
Отсюда фундаментальное различие, проведенное Аристотелем между высказываниями о прошлом и настоящем, с одной стороны, и будущим – с другой: “Итак, относительно того, чт o есть и чт o стало, утверждение или отрицание необходимо должно быть истинным или ложным... Однако не так обстоит дело с единичным и с тем, чт o будет” (5, 18 a 28-33). Единичное случайное событие, если оно уже совершилось, позволяет формулировать о нем либо истинные, либо ложные высказывания. Если же оно относится к несуществующему будущему, ему только еще предстоит произойти или не произойти. Поэтому в момент настоящего высказывание о том, произошло ли будущее случайное событие или нет, еще не стало истинным или ложным, “ибо с тем, чт o не есть, но может быть и не быть, дело обстоит не так, как с тем, чт o есть” (5, 19 b 2-4). В качестве примера такого события Аристотель разбирает завтрашнее морское сражение. Необходимо лишь то, что оно будет или не будет, но не то, что оно необходимо будет или необходимо не будет (5, 19 a 30-33). Высказывания “Завтра произойдет морское сражение” и “Завтра морское сражение не произойдет” пока не истинны и не ложны, или, как говорит Аристотель о суждениях такого типа, “не немедля” истинны или ложны (5, 19 a 38).
Речь идет именно о случайных будущих событиях, поскольку высказывания о том, что совершается по необходимости, будут истинны или ложны независимо от момента их произнесения или написания. В результате центр тяжести падает не на разделение темпоральных высказываний на датированные (и потому якобы определенные во времени) и не содержащие даты, а на разделение их на определенные во времени и неопределенные во времени. Определенные во времени высказывания, согласно Аристотелю, описывают либо то, что стало, либо то, что вообще не знает становления. Если морское сражение случайно состоялось, то высказывания о нем будут истинны или ложны на все оставшиеся времена. Еще лучше, когда положение дел не может быть иным, когда оно воплощает в себе необходимость. Примером необходимо истинного высказывания является закон исключенного третьего. Каким бы ни было событие, оно в каждый момент времени либо существует, либо не существует, либо будет, либо нет, ибо “все необходимо есть или не есть, а также будет или не будет” (5, 19 a 28). То есть закон исключенного третьего действует независимо от типа событий, о которых высказываются. Дизъюнкция “Завтра произойдет морское сражение или Завтра морское сражение не произойдет” истинна несмотря на то, что входящие в нее суждения пока не истинны и не ложны. Что касается суждений о не ставшем, о подверженном изменению существовании, то подобные суждения вообще не допускают приписывания определенного истинностного значения из альтернативы “истина – ложь”. В таком случае получает объяснение настойчивое стремление ряда античных мыслителей найти неподверженное всеразрушающему потоку времени стабильное бытие, относительно которого можно сказать либо что оно было или есть, либо что оно было, есть и будет.
Анализируя аристотелевскую проблему, выдающийся польский логик Я. Лукасевич пришел к идее третьего истинностного значения. Ни одно из противоречащих друг другу высказываний о завтрашнем сражении сегодня не истинно и не ложно. Эти высказывания лишь впоследствии обретут привычные значения истины или лжи (14).
Бурно развивающиеся в наше время исследования в области многозначных логик не касаются проблемы прошлых случайных событий. Точнее говоря, тут вообще не усматривают проблемы. Действительно, если каждое высказывание об актуальном событии либо истинно, либо ложно, и если прошлое неизменно, то при переходе в прошлое и во все более далекое прошлое эти высказывания сохранят свой истинностный статус. Например, если 15 мая 1591 года было истинно высказывание “Царевич Дмитрий убит”, то оно будет (в силу неизменности прошлого) истинным и 15 мая 2002 года и во все последующие времена. Установить истинностную характеристику данного высказывания легче, конечно, по горячим следам. Сейчас это сделать труднее ввиду отдаленности события. Но, коль скоро истинностная характеристика со временем не изменилась, трудности преодолимы, по крайней мере, в принципе.
Так или примерно так рассуждают сторонники тезиса о неизменности прошлого. Но на практике историки часто говорят о невозможности верификации или фальсификации определенных высказываний о прошлом. Могут возразить, что точно так же зачастую невозможно установить истинностные значения высказываний об актуальных событиях, происходящих в отдаленных от нас областях Вселенной. Это возражение бьет мимо цели, так как с точки зрения современной физики вследствие конечной скорости распространения взаимодействий последствия этих событий могут быть обнаружены лишь в будущем. В этом смысле события, которые мы наблюдали бы, если бы мгновенно перенеслись в какую-нибудь другую звездную систему, реально могут себя обнаружить для познающего субъекта только как прошлые события. Так что пространственно удаленные события на самом деле познаются как события прошлого, поэтому перед нами встают те же самые проблемы объяснения особенностей ретроспективного познания.
Правда, сказанное выше не следует возводить в абсолют, как это сделал Ю. Б. Молчанов, утверждая, что все познаваемые нами события – это “события прошлого, которые произошли на столько раньше, сколько времени требуется тому или иному сигналу, чтобы преодолеть расстояние от места их свершения до моих рецепторов и моего мозга” (15. С. 125). Ошибочность этого рассуждения в том, что настоящее в реальной познавательной практике длится. Так, никому и в голову не придет считать себя старше своего отражения в зеркале, историк не будет называть настоящим промежуток времени в 1 секунду, настоящее расположение материков для геолога длится годами и так далее. Прошлое начинается за рамками интервала настоящего, имеющего различную продолжительность для разных областей реальности (в зависимости от характерной скорости изменения наполняющих время событий).
Возвращаясь к основной линии изложения, отметим, что факт невозможности установления истинностных значений некоторых осмысленных высказываний о прошлом при том условии, что эти же высказывания легко верифицируемы или фальсифицируемы в случае актуально происходящих событий (представим, например, что мы наблюдаем за царевичем Дмитрием в течение суток 15 мая 1591 г. и затем верифицируем высказывание о причине его смерти), свидетельствует об особом статусе прошлого в сравнении с настоящим. Реальность прошлого – это не то же самое, что реальность актуального настоящего. Это реальности разных видов, различающиеся способом существования.
К пониманию этого подходил Я. Лукасевич, утверждая, что “и к прошлому мы должны относиться точно так же, как и к будущему”. Даже “всевидящий разум” о некоторых событиях прошлого не мог бы утверждать, “что они были, но лишь, что они были возможны” (14. C . 205). Сказанное означает, что для описания прошлого (как и будущего) нам недостаточно традиционных истинностных характеристик . Вряд ли в самой действительности остались следы угличских событий полутысячелетней давности, которые позволили бы нам или нашим потомкам разрешить загадку смерти царевича. Слишком фрагментарны эти следы. По сути, след события всегда фрагментарен и неполно характеризует событие, его оставившее. Но историческая реальность – это реальность совокупности следов. Обязательно найдутся такие свойства событий, которые будут отсутствовать в совокупности соответствующих следов. “Отсутствовать” в смысле невозможности обоснованно утверждать ни то, что эти свойства были, ни то, что их не было. Поэтому некоторые осмысленные высказывания о существовавшем в прошлом объекте неизбежно будут иметь третье, неопределенное истинностное значение.
Так, химические методы в ряде случаев позволяют установить, что содержание ядовитых веществ в останках людей в несколько раз выше нормы. Например, в волосах Наполеона обнаружили повышенное содержание мышьяка и сурьмы. Однако это не позволяет сделать однозначный вывод о том, что превышение нормы произошло вследствие отравления бывшего императора злоумышленниками. При отсутствии в самой реальности других значимых следов версия об отравлении Наполеона останется недоказанной (12). В этом случае высказывание “Наполеон был отравлен” получает неопределенную истинностную оценку.
Следует различать онтологическую и гносеологическую неопределенность, когда мы говорим о третьем истинностном значении. Так, с определенностью можно утверждать, что среди теорем, которые ученые считают доказанными в настоящее время, имеются ложные высказывания. Но принятие данного утверждения в качестве истинного не специфицирует ни одной теоремы, ошибочно относимой к доказанным истинам. Про любую теорему t мы можем либо утверждать, что она доказана, либо указать, что некоторые ученые считают ее доказанной, либо сослаться на то, что никому не удалось показать ее ошибочность. В любом случае, если t I T , где T – класс всех теорем, принятых в настоящее время в качестве доказанных, то не обязательно мы будем настаивать на несомненной истинности t . А вдруг ошибочность t просто не заметили, или эта ошибочность проистекает из нетривиальных соображений? Представим себе, что ошибочное приписывание значения “истинно” теореме t I T карается смертью. Не окажется ли в этом случае список истинных теорем слишком коротким? Я, пожалуй, рискну на этих условиях утверждать, что в арифметике Пеано 2 ? 2=4, что А ® А доказуемо в классическом исчислении высказываний и т. п. Но вряд ли я решусь утверждать, что для раскраски любой карты достаточно четырех цветов или что арифметика Пеано непротиворечива. А вдруг четырех цветов недостаточно, а вдруг арифметика противоречива – не расставаться же из-за этого с жизнью!
С другой стороны, для любой теоремы t I T не подходит и характеристика “ложно”, поскольку, по определению, T составляют лишь такие утверждения, про которые думают, что они истинны. В этих условиях для каждого t I T неизбежно либо принятие утверждения, что t истинна, либо утверждения, что t неопределенна (т. е. может оказаться истинной, но может быть и ложной, хотя последнее менее вероятно в общем случае). Ясно, что принятие теоремы, на истинности которой мы не настаиваем категорически, имеет гносеологический характер. Если завтра для некоторой теоремы t I T будет показано, что t ложно, то это не потому, что t сегодня была истинной, а завтра стала ложной. Утверждение t и сегодня было ложным, но мы этого не знали. Но данное незнание действительно имело место, так что (за вычетом тех, кто лишился жизни за принятие t в качестве истины) правы были эксперты, приписавшие утверждению t неопределенное истинностное значение. Таким образом, в приведенном примере мы имели дело с гносеологической неопределенностью.
С иным положением дел сталкивается исследователь прошлого и будущего. В момент “теперь” онтологически уже не существует части прошлой жизни и онтологически еще не существует будущей истории во всех ее деталях. Если истинность или ложность утверждения теоремы остается неизменной в веках, то для событий, зависящих от времени, дело обстоит противоположным образом. Не думаете ли вы, что в эпоху существования динозавров уже существовала объективная возможность появления этих строк? Равным образом, не думаете ли вы, что любой из существовавших динозавров оставил в самой реальности неизгладимый след? – Нет, возникновение этих строк, а также читающих их, было творческим актом Вселенной, отнюдь не заложенным в ней от начала времен. Точно так же неизбежно с течением времени исчезнет наша эпоха, оставив в лучшем случае какие-либо следы. Но что-то из нашей жизни исчезнет без следа. В отношении таких процессов возникновения и исчезновения во времени имеет место онтологическая неопределенность.
Традиционные истинностные значения 1 (истина) или 0 (ложь) высказывания А выражаются в языке посредством утверждения либо А, либо O А. Соответственно, в языке должна иметься возможность выражать неопределенность, которую обозначим знаком 1/0. Введем для этого новую унарную логическую связку “н”: нА будем читать как “неопределенно А”, “А не определено” и т. п. Теперь в случае ¦А¦ = 1 утверждаем А, в случае ¦А¦ = 0 утверждаем O А, и в случае ¦А¦ = 1/0 утверждаем нА (здесь ¦...¦ – функция истинностной оценки высказываний).
В согласии с аристотелевским подходом к неопределенности будем считать, что закон исключенного третьего по-прежнему действует и формула А U O А истинна при любом А, но теперь из А U O А уже не следует, что либо ¦А¦ = 1, либо ¦ O А¦ = 1 (или что либо ¦А¦ = 0, либо ¦ O А¦ = 0), поскольку не исключено, что ¦А¦ = 1/0 и ¦ O А¦ = 1/0. С интуитивной точки зрения, неопределенность высказывания А влечет неопределенность его отрицания O А, и наоборот. Поэтому примем также, что нА « н O А, т. е. А не определено тогда и только тогда, когда O А не определено. Если же высказывание А определенно, то по-прежнему из двух противоречащих высказываний А и O А одно является истинным, а другое ложным. Например, суждение “Клеопатра – женщина” определенно истинно, и, значит, его отрицание ложно, тогда как суждение “Клеопатра – красавица” может вызвать споры, во избежание которых этому суждению припишем неопределенное истинностное значение, откуда его отрицание также неопределенно.
В работах (2), (3), (4, гл. 9) нами была предложена и исследована формальная семантика для языка логики предикатов первого порядка, пополненного оператором неопределенности “н”. В построенной семантической теории неопределенности, которая была названа н-семантикой , неопределенность задается набором возможных миров вида (где U – единый для всех миров непустой универсум, F i – функция интерпретации, а J – множество индексов числом не менее двух), попарно отличающихся интерпретацией хотя бы одного предикатного символа. То есть при i ? j найдется такой предикат Р, что F i (Р) ? F j (Р). При этом для любой индивидной константы с принимается F i ( с ) = F j ( с ). Иными словами, имена индивидов считаются твердыми десигнаторами (имеющими одинаковый денотат во всех возможных мирах), а ответственность за неопределенность возлагается на мягкие десигнаторы – предикаты (которые могут иметь разные денотаты в разных мирах). Отношение достижимости на мирах отсутствует. Под неопределенностью высказывания в самом общем плане понимается ситуация, в которой высказывание истинно в одних мирах и ложно в других. Эта простая семантическая идея привела к неожиданным следствиям. Множество общезначимых формул н-семантики оказалось рекурсивно перечислимым, однако было доказано, что понятие естественным образом заданного логического следования в ней не формализуемо, а теорема компактности не верна.
Два последних свойства (а также некоторые другие особенности н-семантики) нежелательны. Они излишне усложняют формальные семантические характеристики неопределенности, тогда как с содержательных позиций все относительно просто: есть определенные высказывания, истинные во всех мирах или ложные во всех мирах, и есть неопределенные высказывания, истинные в одних мирах и ложные в других. Законы классической логики истинны во всех возможных мирах, а противоречия ложны во всех мирах. Поэтому, в частности, А U O А – определенное высказывание (и при том истинное), и O (А U O А) – также определенное высказывание (но ложное).
Стало быть, высказывания А U O А и O (А U O А) остаются определенными независимо от того, является ли исходное высказывание А определенным или неопределенным. Эта, восходящая к Аристотелю, позиция для нас принципиальна. Но именно она заставляет говорить о простоте семантической идеи неопределенности в относительном смысле. Ведь при таком подходе истинностное значение сложного выражения не является, в общем случае, функцией от истинностных значений его частей. И тут ничего не поделаешь. Что приписать дизъюнкции А U В, если ¦А¦ = 1/0 и ¦В¦ = 1/0? Максимум? – Тогда ¦А U В¦ = 1/0. Но если В есть O А? – Тогда ¦А U В¦ = 1. Аналогичные трудности возникают в отношении конъюнкции, импликации и эквивалентности – для них тоже не существует адекватных трехзначных таблиц. Например, рассмотрим высказывание А « В. Пусть ¦А¦ = 1/0 и ¦В¦ = 1/0. Но не спешите приписывать ¦А « В¦ = 1. Если В есть O А, то ¦А « O А¦ = 0, поскольку А « O А противоречиво и, значит, А « O А ложно во всех мирах. Если же истинностное значение А совпадает с истинностным значением В в мире a , но не совпадает в мире b , то А « В истинно в a и ложно в b . Отсюда ¦А « В¦ = 1/0. И т. п. Однако это так только для бинарных логических связок. Унарные логические связки “ O ” и “н” составляют исключение, поскольку определяются следующей таблицей.
А | O А | нА |
1 | 0 | 0 |
1/0 | 1/0 | 1 |
0 | 1 | 0 |
Подобные работы: