Оценка степени загрязнения сточных вод
Курсовая работа
Дисциплина: Моделирование в экологии и ПТС
на тему: «Оценка степени загрязнения сточных вод»
Содержание
Введение
Классификация сточных вод
Очистка сточных вод
Описание метода моделирования и основные определения
Вариационные ряды распределения
Проверка статистических гипотез
Цель работы
Описание исходных данных
Расчетная часть
Заключение
Список использованной литературы
Трудно переоценить роль воды в нашей жизни. В среднем человек за сутки выпивает около 2л воды. Но задумываетесь ли Вы, какую именно воду Вы пьете?! Об этом свидетельствует тот факт, что все больше людей в городах предпочитают пить воду не из-под крана, а покупать воду в бутылках. Это вполне оправданный шаг, связанный с применением хлора, как основного обеззараживающего компонента для очистки воды, да и не только хлора. Опасны для здоровья также определенные условия искусственной и естественной минерализации воды в наших кранах. Недостаточный уровень очистки и обеззараживания при использовании сточных вод, устаревшее оборудование на водозаборных станциях, использованием очищенной речной воды – все это негативно сказывается на здоровье человека. А стоит ли говорить об эпидемической опасности такой воды. Однако и покупка воды в бутылках, к сожалению, тоже не выход. По некоторым параметрам такая вода оказывается на порядок хуже чем та, что течет из крана. И ведь не факт, что вода, которую Вы покупаете, действительно качественна и соответствует всем необходимым нормам.
Не следует забывать также о промышленности. Использование воды на производстве определяется органолептическими, токсикологическими и эпидемиологическими показателями. Использование вод с водозаборов, городских сточных вод, воды с открытых водоемов часто вызывает определенные трудности. В современных условиях вода, как правило, загрязнена и требует доочистки. Однако, в зависимости от химического состава воды обработка ее обеззараживающими веществами может лишь привести к увеличению степени ее токсичности и непригодности. Следует учесть тот факт, что в производстве вода является либо непосредственным (основное рабочее вещество) либо косвенным (охлаждение, очищение и т.д.) участником производственного цикла или технологического процесса. От качества используемой в техпроцессе воды зависит надежность, исправность и долговечность оборудования, и как следствие, экономическое благосостояние предприятия, а также жизни и здоровье людей.
Фермеры используют различные химикаты, попадающие в конечном итоге в пресную воду: гербициды, инсектициды, акарициды, фунгициды и дезинфицирующий раствор для овец, содержащие в целом 450 активных ингредиентов - биоцидов. В землю вносятся стимулирующие рост растений фосфаты и нитраты, а силосные бурты, свиноводческие фермы и птицефермы являются источником большого количества ядовитых стоков. Помимо дезинфицирующих средств пресную воду заражают и применяемые в сельском хозяйстве фармацевтические препараты - антибиотики, гормоны и ингибиторы роста. Гормонные препараты попадают в воду и через канализацию вместе с бытовыми стоками.
Для дезинфицирования питьевой воды используются химические реагенты, следы которых остаются в воде. Считающийся канцерогенным тригалометан - побочный продукт хлорирования воды. В 1988 году в прессе широко освещалось применение сульфата алюминия при очистке воды: тогда несколько тонн этого вещества были сброшены в систему водоснабжения одного английского городка и вызвали массовое заболевание среди местных жителей.
Наиболее опасными загрязнителями промышленного происхождения являются тяжелые металлы: кадмий, свинец и цинк. Другой серьезный источник загрязнения пресных вод - кислотные дожди, вызываемые транспортно-промышленными выбросами.
Загрязнители попадают в пресную воду различными путями, но всегда при участии человека: в результате несчастных случаев, намеренных сбросов отходов, проливов и утечек.
Крупнейший потенциальный источник загрязнения - фермерские хозяйства, занимающие в Англии и Уэльсе почти 80% земель. Часть покрывающего почву необработанного навоза животных проникает в источники пресной воды.
Кроме того, фермеры Англии и Уэльса ежегодно вносят в почву 2,5 млн. т азота, фосфора и калия, и часть этих удобрений попадает в пресную воду. Некоторые из них - стойкие органические соединения, проникающие в пищевые цепи и вызывающие экологические проблемы. Сегодня в Великобритании свертывают производство хлорорганических соединений, выпускаемых в больших количествах в 1950-е гг.
Все большую угрозу для пресноводных водоемов представляют стоки, сбрасываемые рыбоводческими хозяйствами, ввиду широкого применения ими фармацевтических средств борьбы с болезнями рыб.
Лесные хозяйства и открытый дренаж - источники большого количества веществ, попадающих в пресную воду, в первую очередь железа, алюминия и кадмия. С ростом деревьев кислотность лесной почвы увеличивается, и проливные дожди образуют очень кислые стоки, губительные для живой природы.
Попав в реку, навозная жижа может стать причиной серьезной экологической катастрофы, так как ее концентрация в 100 раз больше, чем у сточных вод, обработанных на очистных сооружениях.
Атмосферное загрязнение пресной воды особенно пагубно. Есть два вида таких загрязнителей: грубодисперсные (зола, сажа, пыль и капельки жидкости) и газы (сернистый газ и закись азота). Все они - продукты промышленной или с/х деятельности. Когда в дождевой капле эти газы соединяются с водой, образуются концентрированные кислоты - серная и азотная.
Твердые и жидкие загрязняющие вещества попадают из почвы в источники водоснабжения в результате т. н. выщелачивания. Небольшие количества сваленных на землю отходов растворяются дождем и попадают в грунтовые воды, а затем в местные ручьи и реки. Жидкие отходы быстрее проникают в источники пресной воды. Растворы для опрыскивания сельскохозяйственных культур либо теряют свою активность при контакте с почвой, либо попадают в местные реки, либо выщелачиваются в земле и проникают в грунтовые воды. До 80% таких растворов тратятся впустую, так как попадают не на объект опрыскивания, а в почву.
Время, требуемое для проникновения загрязнитёлей (нитратов или фосфатов) из почвы в грунтовые воды, точно неизвестно, но во многих случаях этот процесс может длиться десятки тысяч лет. Загрязняющие вещества, поступающие в окружающую среду от промышленных предприятий, называют промышленными стоками и выбросами.
На загрязнение могут указывать такие признаки, как мертвая рыба, но есть и более сложные методы его обнаружения. Загрязнение пресной воды измеряется в показателях биохимической потребности в кислороде (БПК) - т. е. сколько кислорода поглощает загрязнитель из воды. Этот показатель позволяет оценить степень кислородного голодания водных организмов.
В то время как норма БПК для рек Европы равна 5 мг/л, в неочищенных бытовых стоках этот показатель достигает 350 мг/л. Большой вред наносит молоко при сливе его избыточного количества, так как вызываемое им загрязнение в 400 раз больше, чем от бытовых стоков.
К самым явным признакам загрязнения пресных водоемов относится цветение воды (бурное развитие фитопланктона). Этот процесс наблюдается, когда вода обогащается смесью органических соединений, выщелоченных из окружающей почвы. Такое обогащение (эвтрофикацию) в большей степени вызывают фосфаты, чем нитраты.
Сложившаяся в последние 20 лет ситуация вызывает тревогу, так как значительная часть из 500 водоемов Англии покрылась зеленью и стала токсичной ввиду их загрязнения. Пресная вода превращается в рассадник потенциально опасных видов бактерий, простейших и грибов. Такие бактерии, как сальмонелла и листерия, а также простейшие - например, криптоспоридия - не менее опасны для здоровья человека, чем холера в Европе в XIX веке.
Водоросли на поверхности воды действуют как густой лесной полог, не пропуская солнечный свет. Это губительно сказывается на производящих кислород водорослях, от которых зависит жизнь водных беспозвоночных и позвоночных. К тому же определенные виды сине-зеленых водорослей выделяют ядовитые вещества, поражающие рыб и другие водные организмы. В результате многие виды отдыха на воде в летние месяцы запрещены в связи с разрастанием и токсичностью водорослей. Причиной цветения последних в озерах и водоемах может также быть вырубка лесов и удобрение лесной почвы - в обоих случаях в воду попадают питательные вещества.
Кислотные дожди вызвали ряд крупных экологических катастроф в Канаде, США и Северо-Западной Европе. Вода в 16000 из 85 000 озер Швеции окислилась, а в 5000 из них полностью исчезла рыба. Начиная с 1976 г., в воду 4000 озер добавляют известь для нейтрализации кислоты и восстановления химического баланса. К этим же мерам прибегают Шотландия и Норвегия, где по аналогичной причине рыбные запасы сократились на 40%. На востоке США ежегодный ущерб в связи с потерей форели, вызванной окислением водоемов спортивного рыболовства, составляет 1 млрд. долларов. Однако за известкование озер расплачиваются прибрежные сообщества. Так, избыток кальция привел к гибели 90% растущего поблизости торфяного мха, кукушкиного льна и ягеля. Значительная часть кислотных дождей приходит в Скандинавию с запада, где промышленность Англии производит около 3,7 млн. т сернистого газа в год.
Как правило, загрязнение водоемов приводит к гибели живой природы, в первую очередь рыб. Но возможна быстрая повторная колонизация и восстановление популяций, особенно с помощью человека. Некоторые беспозвоночные переселяются на пораженные участки из находящихся выше по течению мест; другие перелетают сюда за считанные часы. Одни организмы (такие как речные блюдечки, чьи жабры забиваются илом) чувствительны к нарушению экологического баланса, а другим видам (включая поденок) нипочем довольно высокие уровни загрязнения. Трубчатые черви поглощают бактерии и личинок разных видов звонцов, а пиявки (среди них Helobdella stagnalis) легко переносят эвтрофикацию и низкое содержание кислорода.
Свинец встречается в пресной воде в растворенном виде. Один из источников свинцового загрязнения - рыболовные грузила, которые постоянно выбрасывают при запутывании лески. От свинца сильно страдают лебеди, проглатывающие грузила вместе с водорослями. Он остается в желудке птиц, постепенно растворяясь и вызывая их смерть. «Сломанная шея» (когда мышцы не могут держать длинную шею птицы, и в результате она медленно умирает от голода) является признаком свинцового отравления. Другой тяжелый металл, кадмий, проникает в пресноводную среду, поражает рыб, а через них попадает в организм человека.
Законы - действенное средство предотвращения загрязнения, но добиться их соблюдения трудно. Поэтому новая международная инициатива - «платит сторона, виновная в загрязнении» - идеальна по сути, но редко дает плоды. Всемирная организация здравоохранения (ВОЗ) опубликовала рекомендации по допустимым уровням загрязнения. Например, содержание кадмия в воде не должно превышать 3/1000 мг/л.
Англия, вероятно, первой в мире приняла закон о загрязнении рек, поскольку еще в 1197 г. король Ричард 1 подписал первую хартию о Темзе. Сегодня Европейское Сообщество издаст директивы о качестве воды, но правительства европейских стран не спешат выполнять эти требования. Так, в 1992 г. 9 из 12 стран - членов ЕС превысили уровень содержания нитратов в своих водоемах. По новому законодательству от всех членов ЕС требовалось к 2002 г. создать специальные очистные станции для обработки воды для городского и промышленного потребления, чтобы предотвратить загрязнение рек. В большинстве стран эта работа выполнена.
Классификация сточных вод
Сточные воды могут быть классифицированы по следующим признакам:
по источнику происхождения:
производственные (промышленные) сточные воды (образующиеся в технологических процессах при производстве или добыче полезных ископаемых), отводятся через систему промышленной или общесплавной канализации
бытовые (хозяйственно-фекальные) сточные воды (образующиеся в жилых помещениях, а также в бытовых помещениях на производстве, например, душевые кабины, туалеты), отводятся через систему хозяйственно-бытовой или общесплавной канализации
атмосферные сточные воды (делятся на дождевые и талые, то есть образующиеся при таянии снега, льда, града), отводятся как правило через систему ливневой канализации
Производственные сточные воды, в отличие от атмосферных и бытовых, не имеют постоянного состава и могут быть разделены:
по составу загрязнителей на:
загрязнённые по преимуществу минеральными примесями
загрязнённые по преимуществу органическими примесями
загрязнённые как минеральными, так и органическими примесями
по концентрации загрязняющих веществ:
с содержанием примесей 1—500 мг/л
с содержанием примесей 500—5000 мг/л
с содержанием примесей 5000—30000 мг/л
с содержанием примесей более 30000 мг/л
по свойствам загрязнителей
по кислотности:
неагрессивные (pH 6,5—8)
слабоагрессивные (слабощелочные — pH 8—9 и слабокислые — pH 6—6,5)
сильноагрессивные (сильнощелочные — pH>9 и сильнокислые — pH<6)
по токсическому действию и действию загрязнителей на водные объекты:
содержащие вещества, влияющие на общесанитарное состояние водоёма (напр., на скорость процессов самоочищения)
содержащие вещества, изменяющие органолептические свойства (вкус, запах и др.)
содержащие вещества, токсичные для человека и обитающих в водоёмах животных и растений
В составе сточных вод выделяют две основных группы загрязнителей — консервативные, т.е. такие, которые с трудом вступают в химические реакции и практически не поддаются биологическому разложению (примеры таких загрязнителей соли тяжёлых металлов, фенолы, пестициды) и неконсервативные, т.е. такие, которые могут в т.ч. подвергаться процессам самоочищения водоёмов.
В состав сточных вод входят как неорганические (частицы грунта, руды и пустой породы, шлака, неорганические соли, кислоты, щёлочи); так и органические (нефтепродукты, органические кислоты), в т.ч. биологические объекты (грибки, бактерии, дрожжи, в т.ч. болезнетворные).
Очистка сточных вод
Очистка сточных вод - это разрушение или удаление из них определённых веществ, обеззараживание и удаление патогенных организмов.
Существует большое многообразие методов очистки, которые можно разделить на следующие основные группы по основным используемым принципам:
механические. Они основаны на процедурах процеживания, фильтрования, отстаивания, инерционного разделения. Позволяют отделить нерастворимые примеси. По стоимости механические методы очистки относятся к одним из самых дешёвых методов.
химические. Применяются для выделения из сточных вод растворимых неорганических примесей. При обработке сточных вод реагентами происходит их нейтрализация, обесцвечивание и обеззараживание. В процессе химической очистки может накапливаться достаточно большое количество осадка.
физико-химические. При этом используются процессы коагуляции, окисления, сорбции, экстракции, электролиза, ионообменной очистки, обратного осмоса. Это высокопроизводительный способ очистки, отличающийся высокой стоимостью. Позволяет очистить сточные воды от мелко- и грубодисперсных частиц, а также растворённых соединений.
биологические. В основе этих методов лежит использование микроорганизмов, поглощающих загрязнители сточных вод. Применяются биофильтры с тонкой бактериальной плёнкой, биологические пруды с населяющими их микроорганизмами, аэротенки с активным илом из бактерий и микроорганизмов.
Часто применяются комбинированные методы, использующие на нескольких этапах различные методы очистки. Применение того или иного метода зависит от концентрации и вредности примесей.
В зависимости от того, извлекаются ли компоненты загрязняющих веществ из сточных вод, все методы очистки можно разделить на регенеративные и деструктивные.
Описание метода моделирования и основные определения
Под моделированием понимают процесс построения модели сложной системы и проведения серий экспериментов с этой моделью, направленных либо на понимание специфики функционирования системы, либо на выработку стратегии управления, удовлетворяющей выбранным критериям. "Сложной системой" называют такой объект реального мира, поведение которого невозможно предсказать с необходимой степенью детальности на основе учета обозримого набора ключевых параметров. При решении поставленной задачи будем пользоваться выборочным методом анализа. Задача выборочного метода состоит в том, чтобы на основе знаний свойств выборки можно было сделать какие-либо утверждения о свойствах всей совокупности объектов, которую называют генеральной совокупностью. Мы будем рассматривать статистическую совокупность (т. е. совокупность объектов (отборов проб), которые объединены в (разбиты на) группы по каким либо признакам).
Исследования или измерения каких-либо свойств или характеристик отдельных объектов выборки представляются в виде статистического вариационного ряда (иными словами - показывается закономерность распределения единиц изучаемой выборки по ранжированным значениям варьирующего признака).
Также в процессе работы будет выдвинут ряд статистических гипотез.
Вариационные ряды распределения
сточный вода загрязняющий моделирование
В реальных системах ПТС обычно нельзя проводить активные эксперименты, поэтому данные обычно представляют собой наблюдения за происходящим процессом, например: курс валюты на бирже в течение месяца, урожайность пшеницы в хозяйстве за 30 лет, производительность труда рабочих за смену и т. д. Результаты наблюдений - это, в общем случае, ряд чисел, расположенных в беспорядке, который для изучения необходимо упорядочить (проранжировать).
Операция, заключенная в расположении значений признака по возрастанию, называется ранжированием опытных данных.
После операции ранжирования опытные данные можно сгруппировать так, чтобы в каждой группе признак принимал одно и тожезначение, которое называется вариантом () . Число элементов в каждой группе называется частотой варианта (ni).
Размахом вариации называется число W=xmax – xmin , где xmax - наибольший вариант, xmin - наименьший вариант.
Сумма всех частот равна определенному числу n, которое называется объемом совокупности:
(1.1)
Отношение частоты данного варианта к объему совокупности называется относительной частотой (), или частностью этого варианта:
(1.2)
(1.3)
Последовательность вариантов; расположенных в возрастающем порядке, называется вариационным рядом (вариация — изменение).
Вариационные ряды бывают дискретными и непрерывными. Дискретным вариационным рядом называется ранжированная последовательность вариантов с соответствующими частотами и (или) частностями.
Проверка статистических гипотез
Статистической гипотезой называется всякое высказывание о генеральной совокупности, проверяемое по выборке. Статистические гипотезы делятся на:
1. параметрические - это гипотезы, сформулированные относительно параметров (среднего значения, дисперсии и т. д.) распределения известного вида;
2. непараметрические - это гипотезы, сформулированные относительно вида распределения (например, определение по выборке степени нормальности генеральной совокупности). Процесс использования выборки для проверки гипотезы называется статистическим доказательством. Основную выдвигаемую гипотезу называют нулевой Но. Наряду с нулевой гипотезой рассматривают альтернативную ей H1. Например, Н0: М(х)=1, математическое ожидание генеральной совокупности равно 1; H1: M(x)>1, или М(х)<1, или М(х)1 (математическое ожидание больше 1, или меньше 1, или не равно 1).
Выбор между гипотезами Но и H1 может сопровождаться ошибками двух родов. Ошибка первого рода . означает вероятность принятия H1, если верна гипотеза Н0: . Ошибка второго рода означает вероятность принятия Но, если верна гипотеза H1:
.
Существует правильное решение двух видов:
и (табл.7).
Таблица 1 Ошибки первого и второго родов
Принятая гипотеза | Но | Н1 |
Но - верна | ||
Но – не верна |
Правило, по которому принимается решение о том, верна или не верна гипотеза Но, называется критерием, где:
-уровень значимости критерия;
М=-мощность критерия.
Статистическим критерием «К» называют случайную величину, с помощью которой принимают решение о принятии или отклонении Но.
Замечание. Для проверки параметрических гипотез используют критерии значимости, основанные на статистиках u, t, F. Непараметрические гипотезы проверяют с помощью критериев согласия, использующих статистики распределений: Колмогорова-Смирнова и т.д.
Например, Но: M(x)=10. В зависимости от альтернативной гипотезы рассматривают три случая:
1.Если Н1: M(x)10.
В этом случае рассматривают двустороннюю критическую область и используют дифференциальную функцию f(K/H0), для определения соответствующих квантилей (границ области принятия гипотезы - левой (К) и правой (К))- Площадь под криволинейной трапецией дифференциальной функции слева от Kи справа от К равна . Общая площадь ограниченная криволинейной трапецией дифференциальной функции, квантилями и осью абсцисс, равна(1 -α):
2. Если Н1: M(x)> 10, то рассматривается правосторонняя критическая область (площадь под криволинейной трапецией справа от К равна );
(1.4)
Рис.2. Правосторонняя критическая область
3. Если Н1: M(x)< 10, то рассматривается левосторонняя критическая область (площадь под криволинейной трапецией слева от К равна ):
(1.5)
Рис. 3. Левосторонняя критическая область
Алгоритм проверки статистических гипотез
Располагая выборочными данными (х1,х2,...,хn), формируют нулевую гипотезу h0 и конкурирующую гипотезу H1 .
1. Задают уровень значимости (обычно принимают =0,1; 0,01; 0,05; 0,001).
2. Рассматривается выборочная статистика наблюдений (критерий) К, обычно одна из перечисленных ниже:
u - нормальное распределение;
- распределение Пирсона (хи - квадрат);
t - распределение Стьюдента;
F - распределение Фишера - Снедекора.
4. На основании выборки (х1,х2,...,хn) - определяют значение критерия (статистики) К (приложения 5-7) В зависимости от вида альтернативной гипотезы выбирают по соответствующей таблице квантили критерия для двусторонней (Kи К ) или односторонней области (Kили К ). Если значения критерия попадают в критическую область, то Ноотвергается; в противном случае принимается гипотеза Но и считается, что Но не противоречит выборочным данным (при этом существует возможность ошибки с вероятностью, равной ).
Замечание. Следует отметить, что возможность принятия гипотезы происходит из принципа невозможности наступления маловероятных событий. Те же события, вероятность которых близка к 1, принимаются за достоверные. Возникает проблема выбора уровня риска (уровня значимости ).
В одних случаях возможно пренебрегать событиями р<0,05, в других -нельзя пренебрегать событиями, которые могут появиться с р=0,001 (разрушение сооружений, транспортных средств и т. д.).
Сформулировать и проверить статистические гипотезы,на основании которых можно выяснить:
- можно или нет двум предприятиям разрешить сброс сточных вод?
- одинакова ли квалификация обоих лаборантов (то есть, отличаются ли у них значимо результаты анализов)?
- сколько образцов достаточно брать для испытаний на, первом и втором предприятиях?
Актуальность построения математической модели состоит в том, что изменение качества водного объекта ведёт к сильным изменениям среды. Оно может произойти из-за некоего антропогенного воздействия, как правило, негативного. Такими воздействиями могут являться сбросы сточных вод. При существующей безнаказанности и безответственности некоторых руководителей промышленных предприятий очень важно уметь правильно определить изменение состояния, а соответственно индексы показателей качества воды при залповом сбросе сточных вод для дальнейшего взыскания экологических штрафов за превышение допустимых показателей и несанкционированный сброс. При аварийных сбросах также важно оценить катастрофичность ситуации.
Описание исходных данныхЛаборатория проводит анализ проб воды с целью определения наличия в них вредных веществ. С определенным видом проб работают два лаборанта, результаты анализов сравниваются. Пробы воды поступают из двух предприятий. Лаборатория должна дать заключение, о допустимости сброса сточных вод. Кроме того, руководителя лаборатории интересует вопрос: отличаются ли по точности результаты экспериментов у первого и второго лаборанта? Им было предложено независимо проанализировать одни и те же образцы. Для этих образцов необходимо было определить содержание вредного вещества X. В единице объема количество Х не должно превышать 0,015. Уровень значимости . Данные измерений представлены таблицами 1-4.
Данные измерений, проведенных лаборантами приведены в таблицах:
Таблица 1 Лаборант 1,пункт 1; n1 = 120
Xj | 0,0110 | 0,0120 | 0,0127 | 0,0130 | 0,0138 | 0,0014 | 0,0150 | 0,0156 | 0,0170 | 0,0180 |
nj | 2 | 2 | 7 | 16 | 30 | 35 | 20 | 5 | 2 | 1 |
Таблица 2 Лаборант 1,пункт 2; N2 = 25
Xj | 0,0120 | 0,0128 | 0,0135 | 0,0140 | 0,0147 | 0,0156 | 0,0160 |
nj | 1 | 2 | 5 | 10 | 4 | 2 | 1 |
Таблица 3 Лаборант 2, пункт 1; N3 = 110
Xj | 0,0100 | 0,0120 | 0, 0135 | 0,0142 | 0,0149 | 0,0152 | 0,0160 | 0,0175 | 0,0190 |
nj | 2 | 10 | 17 | 30 | 25 | 17 | 5 | 3 | 1 |
Таблица 4 Лаборант 2, пункт 2; N4= 20
Xj | 0,0115 | 0,0127 | 0,0136 | 0,0142 | 0,0150 | 0,0152 | 0,0165 |
nj | 1 | 1 | 3 | 10 | 3 | 1 | 1 |
где: Xi - значение концентрации загрязняющего вещества;
ni – частота появления i-ого варианта в объеме выборки.
N – Количество проведенных измерений.
Расчетная часть
На первом этапе работы необходимо получить числовые характеристики распределения.