Глобальный круговорот углерода и климат

Тема данной выпускной квалификационной работы: «Глобальный круговорот углерода и климат».

Актуальность. Человеческая деятельность привела к разомкнутости биогеохимического круговорота диоксида углерода (СО2) в наземных экосистемах. Особое место в современных биогеохимических циклах углерода занимают сжигание горючих ископаемых (угля, нефти, газа и др.), обжиг извести, лесные пожары, вырубка лесов, распашка земель. Следствием чего явился прогрессирующий рост его содержания в атмосфере, что катализирует парниковый эффект и может привести к непредсказуемым последствиям – это в первую очередь необратимые глобальные изменения климата в сторону потепления, в результате которых произойдет таяние ледниковых покровов, многолетней мерзлоты и, как следствие, повышение уровня Мирового океана. Будет нарушена экологическая стабильность планеты. Снижение выбросов парниковых газов возможно путем использования альтернативной энергетики, снижения энергоемкости и общей мощности хозяйственной деятельности человека, а также восстановления естественных лесов.

Цель работы: выявить значение круговорота углерода в глобальном изменении климата и определить пути решения связанных с этим экологических проблем.

Объект исследования: глобальный круговорот углерода.

Предмет исследования: влияние концентрации углерода в атмосфере на изменение климата.

Задачи исследования:

1. Изучить, проанализировать литературу по данной теме;

2. Определить источники углерода на Земле;

3. Рассмотреть его биогеохимические круговороты;

4. Описать влияние концентрации углекислого газа на парниковый эффект;

5. Определить механизм перераспределения углерода между сферами географической оболочки в разные геологические эпохи;

6. Выявить основные неопределенности влияния антропогенного углерода на климат;

7. Выявить способы понижения концентрации углекислого газа в атмосфере.


Глава I. Источники углерода на Земле

1.1 Источники и резервы углерода на Земле

Как показывают новейшие исследования возникновение Земли как планеты связано с существованием в прошлом двойной звезды Юпитер-Солнце. Она образовалась из 6-й сброшенной Юпитером оболочки в процессе его звездной эволюции, которая закончилась 3.3 млрд. л.н.

Этим обусловлен первоначальный состав вещества Земли, включающий все элементы шести периодов таблицы Менделеева, синтезированные Юпитером, в том числе такие важные для существования жизни, как углерод - основа биогеохимии.

Основной источник углерода для живых организмов — это атмосфера Земли, где данный элемент присутствует в виде диоксида углерода (углекислого газа, СО2). Масса этого вещества в атмосфере оценивается астрономической цифрой 4 · 1011 тонн! В процессе выветривания и фотосинтеза ежегодно из атмосферы поглощается более 8 · 108 тонн СО2. Если бы не было механизма кругооборота, то за несколько тысяч лет углерод полностью исчез бы из атмосферы, оказался “захороненным” в горных породах. По современным оценкам, масса диоксида углерода, “спрятанного” в горных породах, примерно в 500 раз превышает его запасы в атмосфере. В атмосфере СО2 переносится ветрами как в вертикальном, так и в горизонтальном направлениях.

Диоксид углерода присутствует в воде, где он легко растворяется, образуя слабую угольную кислоту Н2СО3. Эта кислота вступает в реакции с кальцием и другими элементами, образуя минералы, называемые карбонатами. Карбонатные породы, например известняк, находятся в равновесии с диоксидом углерода, который содержится в контактирующей с ними воде. Аналогичным образом количество СО2, растворенного в океанах и пресных водах, определяется его концентрацией в атмосфере. Общее количество растворенных и осадочных углеродсодержащих веществ оценивается примерно в 1,8 трлн. т.

Еще одним переносчиком углерода является метан. Его в атмосфере тоже немало—около 5 · 109 тонн. Однако из атмосферы происходит утечка метана в стратосферу и далее в космическое пространство. Кроме того, метан расходуется и в результате фотохимических реакций. Продолжительность существования молекулы метана в атмосфере в среднем составляет 5 лет.

Углерод в соединении с водородом и другими элементами является одним из основных компонентов клеток растений и животных. Например, в организме человека он составляет около 18% массы тела. Многочисленность и очень широкое распространение живых организмов не позволяют удовлетворительно оценить общее содержание в них углерода. Можно, однако, приблизительно оценить суммарное количество углерода, связываемого растениями, а также выделяемого в процессе дыхания растений, животных и микроорганизмов. Установлено, что зеленые растения поглощают в год около 220 млрд. т CO2. Почти такое же количество этого вещества выделяется в неорганическую среду в процессе дыхания всех живых организмов, а также в результате разложения и сгорания органических веществ.

При определенных условиях разложения и сгорании созданных живыми организмами веществ не происходит, что ведет к накоплению углеродсодержащих соединений. Так, например, древесина живых деревьев может быть на 3-4 тысячелетия надежно защищена от микробного разложения и от пожара корой, способной противостоять действию микробов и огня. Древесина же, попавшая в торфяное болото, сохраняется еще дольше. В обоих случаях связанный в ней углерод оказывается как бы в ловушке и надолго выводится из круговорота. В условиях, когда органическое вещество оказывается захороненным и изолированным от воздействия воздуха, оно разлагается только частично и содержащийся в нем углерод сохраняется. Если впоследствии в течение миллионов лет эти органические остатки подвергаются давлению вышележащих отложений и нагреванию за счет земного тепла, значительная часть его превращается в ископаемое топливо, например в каменный уголь или нефть. Ископаемое топливо образует природный резерв углерода. Несмотря на интенсивное его сжигание, начавшееся с 1700-х годов, неизрасходованными еще остаются примерно 4,5 трлн. т.

Источники пополнения углерода.

Если ограничиться традиционными рамками углеродного цикла, то весь резерв земной атмосферы, океана и биомассы исчерпался бы в довольно короткий срок—за 50—100 тысяч лет. Однако этого не происходит. Почему? Приходится допустить, что запасы углерода на поверхности планеты непрерывно пополняются. Основными источниками поступления углерода ученые считают космос и мантию Земли.

Космическое пространство поставляет нам углерод вместе метеоритным веществом. Точнее будет сказать: поставляло настоящее время поступление космического углерода на планет незначительно — всего 10-10 от общего количества ежегодно “складируемого” в процессе осадконакопления. Но, как полагают многие специалисты, так было далеко не всегда: в прошлые геологические эпохи количество метеоритов и космической пыли было намного больше.

Второй и на сегодняшний день основной поставщик углерода - мантия планеты, причем не только во время извержений вулканов как считалось ранее, но и при дегазации недр, за счет, уже упоминавшегося газового дыхания планеты. Поскольку и здесь углеродные запасы не безграничны, то они, естественно, должны как-то пополняться. И такой механизм пополнения исправно действует и по сей день. Это затягивание осадков океанической коры в мантию при надвигании плит друг на друга.


1.2 Углерод в биосфере и почве

Углерод (С) – активный воздушный и водный мигрант, образующий в биосфере множество органических и минеральных соединений – углеводородов (СО2, СН4, C2H4, С2Н6, СО и др.) и их производных, карбонатов и гидрокарбонатов. Он является главным химическим элементом органического вещества. Углерод в биосфере (педосфере) может находиться в разных фазовых состояниях (твердом, жидком, газообразном), образующих динамическую систему, параметры которой определяются природными и антропогенно-техногенными факторами. Углерод в биосфере представлен наиболее подвижной формой СО2 (диоксид углерода, или углекислый газ).

В истории Земли основным источником СО2 является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Кларковое, или среднее, содержание углекислого газа в атмосфере 0,03 % и в настоящее время оно возрастает, достигая 0,035 %, в земной коре – 0,023, в почвах – 2 %; в биосфере: чистых известняках – 12 %, живом веществе – 18, древесине – 50, каменном угле – 80, нефти – 85 % по объему. В углях, нефти, известняках и других породах содержится около 3 х 1016 т углерода, в атмосфере – 6 х 1011, водах океанов и морей – 4 х 1013, литосфере – 2 х 1017, педосфере (углерод гумуса) – 1,5 х 1012 т. Полный оборот углекислого газа атмосферы Земли через фотосинтез оценивается в 300 лет.

Педосфера является одним из основных резервуаров диоксида углерода в биосфере. Почвы участвуют в балансе СО2, СН4, связывая их в различных формах или, наоборот, способствуя их высвобождению в атмосферу, т.е. почвенный покров играет большую роль в газово-атмосферном режиме планеты. Основным источником СО2 в атмосфере служит дыхание почвы, включающее дыхание корней, микроорганизмов и почвенных животных. Например, эмиссия СО2 (в процессе минерализации органического вещества) почвенного покрова в России составляет 3,12 млрд. т/год. Почвенное органическое вещество является хранилищем самых больших запасов (1395,3 Гт) углерода в наземных экосистемах. Таким образом, почвенный покров своей газовой функцией (по отношению к углероду) выполняет в биосфере важнейшую роль поддержания современного оптимального климата.

Одной из главных составных частей газовой фазы почвы (почвенного воздуха) является углекислый газ. Почвенный воздух существенно отличается от атмосферного, в нем в 10–100 раз больше СО2. Это связано с тем, что почва поглощает богатый кислородом (21 %) атмосферный воздух и выделяет СО2 (что характерно для процесса дыхания). Поэтому газообмен между почвой и атмосферой называют "дыханием" почвы. По количеству выделенного СО2 можно ориентировочно судить о биологической активности почвы (характеризует интенсивность биологических процессов, протекающих в почве). Чем интенсивнее биологические процессы в почве, тем больше она выделяет СО2. При одинаковых условиях (температуре, влажности и т.п.) чем выше содержание органического вещества в почве, тем больше она выделяет СО2. В лесных почвах воздух содержит значительно больше СО2 (за счет дыхания корней растений), чем в пахотных.

Диоксид углерода принимает непосредственное участие в процессах выветривания-почвообразования. Он является важным фактором химического выветривания пород и минералов (например, карбонаты переходят в бикарбонаты и т.п.), влияет на кислотность-щелочность почвенного раствора, увеличивает растворимость фосфатов, усиливает мобилизацию питательных элементов, т.е. переход их в доступное для растений состояние.

Диоксид углерода (непременный компонент атмосферного воздуха) в настоящее время рассматривается как загрязняющее вещество в связи с тем, что за последние десятилетия его поступление в атмосферу в результате сжигания горючих материалов (угля, нефти, газов, сланцев и др.) настолько велико, что не может полностью перерабатываться растениями планеты и растворяться водами Мирового океана.

Выводы по I главе

Вся земная жизнь основана на углероде. Каждая молекула живого организма построена на основе углеродного скелета. Атомы углерода постоянно мигрируют из одной части биосферы (узкой оболочки Земли, где существует жизнь) в другую. Известный географ И.М.Забелин высказал мысль, что природа создала сначала жизнь для ускорения круговорота углерода, а затем разум для того, чтобы ускорить развитие биосферы.

Основной источник углерода для живых организмов — это атмосфера Земли, где данный элемент присутствует в виде диоксида углерода (углекислого газа, СО2). Еще одним переносчиком углерода является метан. Однако из атмосферы происходит утечка метана в стратосферу и далее в космическое пространство.

Если ограничиться традиционными рамками углеродного цикла, то весь резерв земной атмосферы, океана и биомассы исчерпался бы в довольно короткий срок—за 50—100 тысяч лет. Однако этого не происходит. Запасы углерода на поверхности планеты непрерывно пополняются из космического пространства и мантии Земли.


Глава II. Глобальный круговорот углерода

2.1 Круговороты химических элементов в биосфере

Изменения, происходящие в мире, разделяются на регулярные и хаотические. Устойчивые изменения часто имеют циклический характер, когда система снова и снова переходит в точно такое же состояние, в котором она была в начале процесса. Цикл (греческое kyklos – круг) характеризуется периодом, амплитудой, т.е. размахом колебаний и порядком следования событий перехода системы из одного состояния в другое. Промежуток между последовательными событиями, содержанием которого является один из взаимосвязанных процессов цикла или одно из возможных состояний системы представляет собой фазу цикла.

Планетарный круговорот веществ – процесс перемещения и превращения вещества, неизменно повторяющийся цикл развития в системе земных геосфер (литосфере, гидросфере, атмосфере, педосфере) и, прежде всего, в биосфере. Символом круговорота служит не круг, а циклоида – линия, описываемая точкой, находящейся на ободе движущегося колеса, т.е. движение (развитие) по спирали, имеющее более или менее выраженный циклический характер. Как отмечает А.И. Перельман, термин "круговорот" нельзя признать удачным, так как он создает впечатление о развитии по кругу, о возвращении системы в прежнее состояние. В действительности круговорот элементов обратим не полностью, часть веществ из него изымается и фоссилизуется (захороняется) в биосфере и стратисфере (осадочной оболочке Земли и слоистых вулканических породах) в виде гумуса, пород и минералов (известняков, торфа и др.). В результате системы не возвращаются в прежнее состояние, для них характерно поступательное развитие.

Круговорот веществ – основное свойство геосфер различных уровней, отражение единства вещества на планете. Он создает основной механизм превращения на Земле вещества (солей, газов, взвесей и т.д.) и энергии (теплоты) и объединяет разные слои (оболочки) планеты. Например, вулканические извержения поставляют СО2 в атмосферу и гидросферу, а фотосинтез и карбонатообразование изымают СО2, связывая углерод в карбонатах и органических соединениях. Таким образом, происходит обратная связь между глубокими частями земной коры (а возможно, и верхней мантии) и биосферой, названная А.И. Перельманом «геохимическим циклом (круговоротом)», в котором участвует земная кора (биосфера, стратисфера, метаморфическая и гранитная оболочки) и который включает в себя тектономагматические и биосферные циклы (20).

Освещая вопрос о круговороте химических элементов, важно отметить, что в природе постоянно протекают различные химические реакции. Часть этих реакций проходит без участия живых существ, а часть — при их непосредственном участии, т. е. в живой природе. В результате химических процессов атомы перемещаются, движутся. Вследствие этого происходит обмен веществ и энергии между всеми оболочками Земли: литосферой, атмосферой, гидросферой, биосферой. Круговорот химических элементов является причиной постоянства протекания химических реакций. Можно сказать, что благодаря круговороту химических элементов - повторяющимся процессам превращения и перемещения веществ в природе - возможна жизнь на Земле.

Круговая или спиральная упорядоченность проявляется и при взаимодействии разнородных систем. В биологический круговорот веществ вовлечена как косная, так и живая природа: на поверхности суши и в верхних слоях морей идут процессы аккумуляции элементов в живых организмах, а в почве и в глубинах водоемов разложение органики приводит к минерализации.

Биогеохимическая машина Земли представлена циклами элементов, связанных между собой. Это углерод, кислород, азот, кальций, магний, фосфор, сера, кремний, железо.

Главенствующим является цикл органического углерода (рис.1), с ним сопряжены циклы углекислоты и кислорода.

Цикл углерода

Рис.1 Круговорот углерода

Превращение неорганического углерода в первичную продукцию происходит в этом цикле за счет использования солнечной энергии цианобактериями, водорослями, растениями и в малой степени хемоавтотрофами, использующими эндогенный водород. В процессе фотосинтеза создаются органические вещества из углекислоты и воды при участии ферментов в хлоропластах клеток автотрофов, превращающих в свои ткани углекислоту, воду, минеральные соли, основными элементами которых являются калий, фосфор, азот, и поставляющих в атмосферу кислород. В деструкционной части цикла органического углерода участвуют органотрофные организмы; конечным продуктом деструкции является углекислота, замыкающая цикл органического углерода и сопрягающая его с циклом неорганического углерода и циклом кислорода. Выделение углекислоты в атмосферу идет на всех уровнях биоценоза. Поступление углекислого газа, продукта процессов окисления, имеет суточную и сезонную ритмику.

Цикл органического углерода дополняется циклами азота, кальция, магния, кремния, серы, железа. Из отдельных циклических процессов складывается круговорот – взаимосвязанное превращение и перемещение веществ в природе не полностью обратимое.

Циклические или органогенные элементы имеют наибольшую суммарную массу в биосфере. Для циклических элементов характерны многочисленные химические обратимые процессы. Их геохимическая история может быть выражена круговыми процессами (циклами). Каждый элемент дает характерные для определенной геосферы соединения, постоянно возобновляющиеся. После более или менее продолжительных и более или менее сложных изменений элемент возвращается к первичному соединению и начинает новый цикл, завершающийся для элемента новым возвращением к первоначальному состоянию. Великие ученые, открывшие в 1773 г. земные газы (O2, CO2, H2O, NH3, H2S, SO2, SO3, H2, CH4, CO, CHOH, CSO, NO2) и их свойства, предугадали эти характерные химические циклы. Имена этих ученых Д. Прингль и Д. Пристлей. Затем в 1842г. два французских ученых Ж. Б. Дюма и Ж. Буссенго дали яркую картину этих циклов. В 1850-х годах К. Бишоф, позже Ю. Либих и К. Мор перенесли эти представления на остальное вещество земной коры. Элементы, образующие циклы, характеризуются химическими соединениями, молекулами или кристаллами. Эти циклы обратимы лишь в главной части атомов, часть же элементов неизбежно и постоянно выходит из круговорота. Этот выход закономерен, т.е. круговой процесс не является вполне обратимым (30).

Среди форм такого выхода из цикла особое значение имеет рассеяние элемента, его выход в форме свободных атомов. Быть может, элемент этим путем выходит из цикла, иногда навсегда.

2.2 Биогеохимические круговороты углерода: ландшафтный, малый и биосферный

Биогеохимический круговорот углерода - это комбинация последовательных периодических (в течение суток – миллиардов лет) непрерывных замкнутых процессов превращения, перемещения, распределения, рассеяния и концентрации углерода через косную и органическую природу в биосфере при активном участии живых организмов. Биогеохимический круговорот углерода в биосфере в целом и в конкретном ландшафте – из диоксида углерода в живое вещество и обратно в диоксид углерода – приводится в действие диалектическим единством двух противоположно направленных процессов – фотосинтеза и минерализации. Но часть углерода посредством медленно идущих циклических процессов удаляется, отлагаясь в осадочных породах. Баланс атмосферного углерода определяется биогеохимическими круговоротами, в каждом из которых осуществляются приход и расход СО2 (20).

В ходе жизнедеятельности организмов (в процессе дыхания) и при вулканических извержениях углерод возвращается в атмосферу и гидросферу. Определенное количество его отлагается в литосфере и педосфере и расходуется на углекислотное выветривание алюмосиликатов и образование различных углеродистых соединений. При этом биологические компоненты ежегодного круговорота углерода значительно превосходят геологические составляющие этого процесса.

В течение четырех лет растения суши и моря усваивают столько углерода, сколько его содержится в атмосфере, а в течение 300 лет – в гидросфере. За время геологической истории углерод атмосферы и гидросферы, вероятно, многократно участвовал в круговоротах. Однако эти циклы (цикл – законченный круг миграции углерода в биогеохимических круговоротах) необратимы. Стоит заметить, что извлеченный из атмосферы углерод, и захороненный даже в виде карбонатов, не говоря уже о захороненной органике, извлекается из нее все же не навсегда. По прошествии некоторого, часто очень значительного времени (до сотен миллионов лет и более), он возвращается обратно в атмосферу и участвует в дальнейшем круговороте.

Предположим, что в определенный период времени начинается интенсивное образование осадков, содержащих углерод (хоть образование карбонатов, хоть захоронение органики, хоть и то, и то, вместе), и через некоторое время прекращается. Накопленные океанической корой большие запасы осадков постепенно в процессе субдукции попадают в недра, на большую глубину, где под действием очень высокой температуры происходит разложение этих больших запасов карбонатов и органики. В результате, по прошествии некоторого, довольно большого времени (которое требуется, чтобы часть плиты с высоким содержанием упомянутых осадков дошла до больших глубин до сотни километров) увеличиваются потоки углекислого газа и метана в атмосферу. Однако увеличение потоков этих газов в атмосферу в свою очередь стимулирует и рост биомассы (с последующим увеличением захоронения отмершей части), и накопление карбонатов, что приводит в дальнейшем к повторению цикла.

Цикл органического углерода определяется реакциями фотосинтеза, ведущими к образованию первичной продукции (новообразование органического вещества растений продуцентов):

СО2 + Н2О = (СН2О) + О2

где (СН2О) – сокращенное обозначение биомассы, и суммарной реакцией деструкции:


(СН2О) + О2 = СО2 + Н2О (дыхание).

Цикл органического углерода сопряжен с циклом неорганического углерода путем углекислотного выщелачивания изверженных пород и образования осадочных карбонатов по обратной реакции:

Са (НСО3)2 ↔ СаСО3 + СО2 + Н2О.

При этом карбонатное равновесие или устанавливается химически, или катализируется ферментом карбоангидразой. Углекислотное выветривание магматических пород привело к образованию огромных запасов минерального углерода в виде известняков и доломитов.

Скорость изменения массы углерода в атмосфере зависит от интенсивности изъятия его из воздушной оболочки и консервации. Выведение СО2 из круговоротов происходит в результате продукции органического вещества фотосинтезирующими растениями и связывания при образовании карбонатных пород в результате процессов выветривания-почвообразования. В химическом отношении роль СО2 при выветривании сводится к вытеснению из силикатов и алюмосиликатов щелочных и щелочноземельных металлов и переводу их в карбонаты. Например, образование каолинита из плагиоклазов, наиболее распространенных силикатных минералов литосферы, описывается реакциями альбит каолинит

2NaAlSi308 + 2СО2 + 3Н2О = Al2 (Si2O5) (OH)4 + 2NaHCO3 + 4SiO2,

анортит каолинит

СаА12SiO2О8 + 2СО2 + 3Н2О = Al2 (Si2O5) (OH)4 + Ca (HCO3)2.

Однако кроме силикатных пород углекислотному выветриванию подвержены также осадочные карбонатные породы, взаимодействие которых с атмосферным СО2 идет по реакции

СаСО3 + СО2 + Н2O = Са (НСO3)2.

Связывание атмосферного СО2 при выветривании происходит опосредованно через цикл продукции и деструкции органического вещества почв. В этом отношении почвенный покров является своеобразным химическим реактором, где идут процессы выветривания.

Преобладающая часть атомов углерода земной коры сосредоточена в известняках и доломитах (минеральный, или неорганический углерод). Отношение захороненного углерода (103 ГтС) в продуктах фотосинтеза к углероду в карбонатных породах (107 ГтС) составляет 1:4 (20). Время, в течение которого происходило накопление углерода в литосфере, очень велико и сравнимо с временем существования биосферы.

Особое место в современных биогеохимических циклах углерода занимают сжигание горючих ископаемых (угля, нефти, газа и др.), обжиг известняка, лесные пожары, вырубка лесов, распашка земель и т.п., связанные с деятельностью человека. В результате в атмосферу возвращается около 1,5 млрд. т углерода, т.е. примерно столько же, сколько его ежегодно связывается в ходе выветривания (образование СаСО3 и других минералов). Биогеохимические круговороты углерода протекают в пространстве и времени. По длительности (периодичности) и пространственному развитию можно выделить относительно короткие (часы – тысячи лет) биогеохимические круговороты (малый и ландшафтный биогеохимические циклы углерода) и биогеохимический цикл, соизмеримый с геологической историей (большой биогеохимический цикл углерода). В пространственном отношении первые протекают в широком спектре экосистем (ландшафтов) разных уровней, второй – охватывает всю биосферу. Малый и ландшафтный биогеохимические круговороты (циклы) углерода развиваются на фоне большого биогеохимического круговорота (цикла) и являются его составной частью.

В биогеохимических круговоротах углерода особо важная роль принадлежит почве, поскольку она служит важнейшим накопителем органического вещества, представленного органическими остатками и гумусом, которые служат одновременно и аккумулятором, и донором СО2. Педосфера, являясь одной из главных фаз биосферного круговорота, выполняет в отношении углерода следующие функции: резервуара для стока и трансформации атмосферного углерода, ассимилированного при фотосинтезе наземной растительностью; генератора и аккумулятора устойчивых соединений углерода в форме гумуса и карбонатов; генератора и источника подвижных соединений и бикарбонатов в виде углеродосодержащих газов (прежде всего СО2) и водорастворимых органических соединений и бикарбонатов.

Педогенный углерод, включаясь в воздушные и водные миграционные потоки, связывает биоту, атмосферу, гидросферу, литосферу в единый биосферный биогеохимический круговорот веществ.

Ландшафтный биогеохимический круговорот углерода – миграция, распределение, рассеяние и концентрация углерода, осуществляющиеся на литологически однородном участке земной поверхности (части географической оболочки Земли) от элювиальных ландшафтов к супераквальным и субаквальным (аквальным), представляющем сложную биокосную систему, в которой почва, кора выветривания, континентальные отложения, грунтовые и поверхностные воды, растительность, животный мир, приземный слой атмосферы тесно между собой связаны миграцией атомов углерода. Между компонентами ландшафта существуют радиальные, или вертикальные (между атмосферой, растительным и животным миром, почвами, горными породами, подземными и поверхностными водами), и латеральные, или горизонтальные (между соседними геосистемами разных рангов), миграции углерода.

Природный ландшафтный биогеохимический круговорот углерода складывается из его абиогенной (физико-химической, механической) и биогенной (фотосинтез, разложение органического вещества и т.д.) миграции. На данном типе круговорота акцентируется внимание при решении локальных и региональных задач, связанных с циклами и балансом углерода, при изучении элювиальных (автономных), трансэлювиальных (транзитных), супераквальных и субаквальных элементарных геохимически сопряженных ландшафтов. Вертикальная мощность ландшафта измеряется слоем, в котором наиболее активно взаимодействуют все отдельные среды.

Малый биогеохимический круговорот углерода – динамическая геохимическая система превращения живого вещества, в которой происходит беспрерывный круговорот углерода при участии растений, животных и микроорганизмов. В круговороте участвуют почва (педосфера), растительность и атмосфера, которые объединены механизмом прямой и обратной связи (почва ↔ растительность ↔ атмосфера).

Главные компоненты, обеспечивающие малый биогеохимический круговорот углерода (как и ландшафтный круговорот): продуценты (все зеленые растения, производящие органическое вещество из неорганических составляющих), консументы (все группы животных, паразитарные формы грибов, растения-паразиты) и редуценты (в первую очередь бактерии и грибы, превращающие органические остатки в неорганические вещества). Малый биогеохимический круговорот углерода проявляется в относительно коротком цикле (часы – сотни лет) и связан со сложным взаимодействием химических, биохимических и биологических процессов, которые контролируются сложным комплексом природно-экологических (биотой, климатом и т.д.) и антропогенных факторов. Малый биогеохимический круговорот углерода развивается на фоне биосферного биогеохимического круговорота и в экосистемах (биогеоценозах) протекает совместно с ландшафтным круговоротом, хотя и в разных формах, и с разной интенсивностью. Малый и ландшафтный биогеохимические круговороты углерода являются наземными круговоротами, так как они охватывают экосистемы суши.

Биосферный биогеохимический круговорот углерода – непрекращающийся процесс миграции, распределения, рассеяния и концентрации углерода в системе "верхние слои литосферы – океан – нижняя часть атмосферы", соизмеримый с геологической историей земной коры. Данный круговорот определяется как биологическими, так и геологическими процессами (тектонические поднятия, седиментогенез, вулканическая деятельность и др.), в своей совокупности осуществляющими обмен углерода между сушей, океаном и атмосферой. Круговорот углерода в биосфере состоит из двух разных циклов: наземного и морского, связанных через границу между океаном и атмосферой (20). Круговорот, идущий в океане, в основном автономен. Диоксид углерода, растворенный в морской воде, усваивается фитопланктоном, а кислород уходит в раствор. Зоопланктон и рыбы потребляют углерод, фиксированный фитопланктоном, а кислород используют при дыхании. В результате разложения органических веществ в воду возвращается СО2, усвоенный фитопланктоном. Ежегодное сжигание примерно 5 млрд. т горючих ископаемых должно увеличить атмосферный запас СО2 на 0,7 %, т.е. к 320 млн.–1 (современное содержание СО2) ежегодно должно прибавляться почти на 2 млн.–4. На деле же за год концентрация СО2 в воздухе быстро уходит из атмосферы или в океан, или в наземную флору. Биосферный круговорот углерода состоит из двух разных циклов – наземного и морского (океанического).

Распределение СО2 между органическим веществом почвы, растительностью, атмосферой и океаном играет важную роль в формировании теплового баланса планеты, который зависит как от природных (фотосинтез растений, дыхание корней, животных и микроорганизмов, обменная диффузия на поверхности океана, метаморфизация органических материалов, поступление СО2 из глубин земной коры), так и от антропогенно-техногенных (обработка земли, выжигание растительности, сгорание топлива) процессов. Деятельность человека приводит к дополнительному накоплению углерода в атмосфере, которое катализирует парниковый эффект, что может привести к планетарному потеплению климата.

Годовой уровень обмена углерода между поверхностью Земли и атмосферой составляет 225 ГтС/год, что примерно в 30 раз превышает количество СО2, связанного с антропогенными выбросами. Около 80 % (или 60 % СО2 суши) пула углерода сосредоточено в северной циркумполярной области (тундра, тайга, леса, луга), тропических и субтропических лесах. В бореальных лесах, 2/3 которых сосредоточены в России, содержится более 40 % СО2 суши. Три четверти запасов углерода циркумполярного Севера сосредоточены в лесных регионах, составляющих более 1500 млн. га суши (10 % поверхности Земли). Основная часть этого пула находится в виде отмершего органического вещества в поверхностном слое торфяных и лесных почв. По отношению к массе углерода коэффициенты фоссилизации органического углерода составляют: в глубоководных частях океана – 0,06 %, на шельфе – около 1%, в озерах на континентах (в виде сапропеля) – 3,5%, в болотах – 8,6 %. Содержание органического углерода в детрите и гумусе педосферы достигает 2104* 1012 кгС, что в 2,9 раза превышает его массу в атмосфере (728 *1012 кгС) и в 3,8 раза выше, чем в биомассе наземной растительности (560* 1012 кгС). Океан поглощает более 4 ГтС/год, из них более 2 ГтС/год приходится на долю биоты океана.

углерод круговорот климат парниковый


Выводы по II главе

Углерод участвует в глобальном круговороте. Живые организмы в той или иной мере фиксируют его, и он на миллионы лет оседает в земной коре в связанном состоянии в виде горных пород, ископаемых топлив - каменного угля, нефти, органических газов. Постоянно действующий конвейер вещества планеты увлекает углерод на различные глубины, где он в результате метаморфоза принимает самые разнообразные формы и в итоге рассеивается по всей земной коре.

Указанные типы биогеохимических круговоротов углерода во многом принципиально сходны. Они связаны между собой механизмами переноса углерода в пределах биосферы, которые совершаются с использованием солнечной энергии и энергии химических реакций. Различия заключаются в основном в масштабах, темпах и сроках завершения цикла. Биосферный биогеохимический круговорот протекает несопоставимо медленнее, чем ландшафтный и малый круговороты. Два последних направлены главным образом на аккумуляцию и удержание углерода в экосистемах (биогеоценозах). Любое нарушение почвенного покрова приводит к потере органического углерода, что порождает глубокие изменения в сложившихся биогеохимических потоках углерода в геосферах.

Потери органического углерода вызваны обработкой земли, лесными пожарами, рубками леса, гибелью лесов в результате болезней и инвазии насекомых, а также промышленными загрязнениями. По масштабам воздействия на углеродный бюджет лесных экосистем Европейской России основная роль принадлежит рубкам, а в Азиатской России – лесным пожарам, вредным насекомым и болезням. Размеры пулов СО2 в лесах России и масштабы его годичного депонирования в ближайшие один - два десятилетия будут определяться двумя основными факторами – лесными пожарами и промышленными рубками. Повышение продуктивности и улучшение структуры ("омоложение") лесов, расширение площадей покрытых лесом земель приведут к увеличению депонирования углерода лесной растительностью, что важно для сбалансированности биогеохимических круговоротов СО2.


Глава III. Влияние круговорота углерода на глобальный климат

3.1 Концентрация углерода в системе «литосфера-гидросфера атмосфера»

Больше всего углерода сконцентрировано в карбонатных горных породах - известняке CaCO3 и доломите СаСО3*MgCO3 . Однако, содержащийся в них углерод практически выводится из круговорота.

Основное связующее звено в круговороте этого элемента - атмосфера, по

Подобные работы:

Актуально: