Геометричні місця точок на площині та їх застосування
КУРСОВА РОБОТА
на тему:
«Геометричні місця точок на площині та їх застосування»
Вступ
Актуальність дослідження. Поняття геометричного місця точок у просторі (ГМТ) має велике методичне і загальноосвітнє значення. Неможливо переоцінити його роль у розвитку просторової уяви.
Розв'язування задач, в яких застосовуються геометричні місця точок як на площині, так і в просторі, активізують творчу думку і фантазію, розвивають логічне мислення, кмітливість, змушують перебирати в пам'яті всі відомі теореми з метою відбору і застосування найбільш придатної з них.
Таким чином, тема Геометричні місця точок на площині та їх застосування, на сучасному етапі є досить актуальною.
Зв’язок роботи з науковими планами, програмами, темами. Дана курсова робота пов’язана з дисципліною Геометрія та загальним навчальним планом Миколаївського державного університету імені В.О. Сухомлинського.
Об’єкт дослідження. Розділ геометрії – аналітична геометрії та його застосування на практиці.
Предметом дослідження є геометричні місця точок на площині та їх застосування.
Метою дослідження є теоретичне та практичне застосування поняття геометрії – геометричні місця точок на площині.
Відповідно до поставленої мети нам необхідно вирішити наступні завдання:
1. Дослідити наукову та методичну літературу з обраної теми курсової роботи.
2. Здійснити загальну характеристику визначення ГМТ в межах курсового дослідження.
3. Проаналізувати основні ГМТ на площині.
4. Привести приклади задач на відшукання ГМТ
5. Висвітлити процес застосування ГМТ до розв’язання задач на побудову.
Теоретичне та практичне значення. Матеріали даної курсової роботи можна використовувати при викладанні відповідної теми з курсу Геометрія, а також для участі у наукових семінарах та конференціях, викладання на уроках геометрії.
Геометричне місце точок є одним з найважливіших понять геометрії. Але воно широко використовується не лише в геометрії, ай в математичному аналізі, механіці і в багатьох технічних дисциплінах. Тому поняття геометричного місця точок має велике загальноосвітнє значення.
Означення. Геометричним місцем точок називаємо фігуру, всі точки якої мають певну властивість, яка належить обов'язково і виключно точкам цієї фігури.
Коли розглядати геометричне місце точок на площині, то можна одержати, наприклад: пряму, промінь, коло і інші плоскі криві, точку, сукупність ізольованих точок, сукупність прямих, відрізок, сукупність відрізків, дугу, сукупність дуг, деяку частину площини тощо.
На понятті про геометричне місце точок ґрунтується особливий спосіб розв'язування задач на побудову, що має назву методу геометричних місць. Суть його така: зводять всю задачу на побудову до відшукання положення на площині однієї або декількох точок, які визначаються двома умовами, що випливають з вимог задачі. Якщо відкинути одну з цих умов задачі, то вона стане невизначеною і решту умов буде задовольняти, не одна точка, а нескінченна множина точок, що утворюють якесь геометричне місце. Якщо потім відновити відкинуту умову, а відкинути другу, то решту умов, знов буде задовольняти нескінченна множина точок, що утворюють нове геометричне місце. Кожна точка перетину цих двох геометричних місць задовольняє вимогам задачі і, отже, буде шуканою. Задача матиме стільки розв'язків, скільки спільних точок мають знайдені геометричні місця.
Подана характеристика методу геометричних місць показує, що його застосовують при розв'язуванні таких задач, умову яких можна розчленувати на дві незалежні вимоги, кожна з яких окремо визначає відповідне геометричне місце точок. Правда, інколи одно з геометричних місць буває заданим самою умовою задачі.
Позитивними рисами методу є такі: а) при розв'язуванні задач методом гeoметричних місць спрощується відшукання плану розв'язування задачі і способу її побудови; б) відкидаючи одну умову задачі і змінюючи іншу, можна об'єднати декілька задач на побудову в одну групу і розглядати їх як різні варіанти деякої загальної конструктивної проблеми.
Пояснимо сказане про особливості методу геометричних місць точок на такому прикладі:
Задача. Дано трикутник ABC. Побудувати в площині три кутника точку М, яка була б на однаковій віддалі від вершин А та В і на віддалі d від третьої вершини С (рис. 202).
Аналіз. Шукана точка М повинна задовольняти дві умови: а) вона повинна знаходитись на однаковій віддалі від двох точок А і В і б) вона повинна знаходитись на віддалі d від третьої точки.
Відкинемо другу умову. Тоді одну першу умову буде задовольняти нескінченна множина точок, що утворюють геометричне місце – перпендикуляр, проведений через середину D відрізка АВ. Збережемо тепер другу умову і відкинемо першу. Тоді одну другу умову буде задовольняти нескінченна множина точок, що утворюють геометричне місце – коло з центром в точці С і радіусом, рівним d. Точки М і М1 перетину першого геометричного місця з другим будуть Шуканими.
Побудов а. Для розв'язування задачі потрібно побудувати перше і друге геометричні місця.
Будуємо перпендикуляр ND до відрізка АВ в його середині D (основна побудова див. § 2) і коло радіусом, рівним а, з цент ром в С; точка перетину кола з перпендикуляром ND визначить шукану точку M.
Дослідження. Оскільки коло може перетинати пряму не більш ніж в двох точках, то залежно від даних (∆ ABC і d) задача може не мати жодного розв'язку або мати до двох роз в'язків. На рис. 202 показано випадок двох розв'язків.
При розв'язуванні задачі ми користувались першим і другим геометричним місцем, як даними. Ця обставина приводить до необхідності знання хоча б основних геометричних місць на площині, якщо ми бажаємо навчитись розв'язувати задачі на побудову методом геометричних місць.
2. Основні ГМТ на площиніІ. Геометричним місцем точок, рівновіддалених від даної точки, є коло з центром у цій точці і з радіусом, який дорівнює даній відстані. | |
ІІ. Геометричним місцем точок, рівновіддалених від двох даних точок, є серединний перпендикуляр до відрізка, який з'єднує ці точки. | |
ІІІ. Геометричне місце точок, віддалених від даної прямої на відстань А, складається з двох прямих, паралельних даній і віддалених від неї на відстань h: | |
Геометричним місцем точок, рівновіддалених від двох паралельних прямих, є пряма, паралельна даним прямим і однаково віддалена від них. | |
Геометричне місце точок, рівновіддалених від двох прямих, що перетинаються, складається з двох прямих, які містять бісектриси кутів, отриманих в результаті перетину даних прямих. |
Подобные работы: