Возможности анализа данных медико-биологических экспериментов в программе Statistica

Статистика в медико-биологическом исследовании

Выбор метода анализа в соответствии с типом распределения данных

Анализ времени жизни в ППО Statistica

Сравнение коэффициентов корреляции

Практическая часть

Заключение

Литература


Введение

Развитие медицины невозможно без проведения медико-биологических экспериментов, эпидемиологического анализа, оценки эффективности фармакологических препаратов и других исследований как доклинического, так и клинического уровня.

Объектом научного исследования обычно выступает не просто отдельное явление, конкретная ситуация, а целый класс сходных явлений и ситуаций, их совокупность. Цель и непосредственные задачи научного исследования состоят в том, чтобы найти общее у ряда единичных явлений, выявить законы, по которым они возникают, развиваются и функционируют (1, 2, 3 ). Важнейшим обстоятельством, определившим необходимость применения математико-статистических методов, явилось установление факта, что многим биологическим системам свойственны статистические закономерности, обнаруживаемые при изучении совокупностей, но неприменимые к отдельным единицам этих совокупностей (2).

Отличительными признаками научного исследования являются:

1. целенаправленность процесса (достижение поставленной цели, выполнение четко сформулированных задач)

2. направленность на поиск, на творчество, на выдвижение идей

3. систематичность как самого процесса исследования, так и его результатов

4. строгая доказательность, обоснованность выводов (4, 5, 6)

Развитие идей критической оценки медицинской информации привело к возникновению в конце 80-х годов XX века концепции доказательной медицины (ДМ).

Основными постулатами ДМ являются следующие (7):

— каждое решение врача должно основываться на научных данных;

— вес каждого факта тем больше, чем строже методика научного исследования, в ходе которого он получен.

ДМ является концепцией как для врачей, исследователей, руководителей учреждений и органов здравоохранения, так и для пациентов. Основная цель концепции ДМ состоит в том, чтобы постепенно превратить врачебную деятельность из искусства в науку (7).

Любое исследование в зависимости от того, насколько надежны полученные в нем результаты и насколько они применимы в клинической практике, можно охарактеризовать с двух точек зрения:

— достоверности (внутренней обоснованности)

— о6общаемости (внешней обоснованности, применимости)

Достоверность (внутренняя обоснованность) исследования определяется тем, в какой степени структура исследования соответствует поставленным задачам, а полученные результаты справедливы в отношении изучавшейся выборки.

Обобщаемость (внешняя обоснованность) результатов исследования отражает, в какой мере результаты данного исследования применимы к другим группам, например к больным другого пола, другой популяции и т.п.

Достоверность и о6общаемость зависят от правильности проведения исследования на всех этапах, в том числе, от грамотной статистической обработки полученных данных (7).

Широкая доступность вычислительной техники дает возможность обработки больших объемов данных, использования различных методов анализа. Кроме того, программа конкретного метода обработки позволяет многократно повторять вычисления с небольшими изменениями без дополнительных усилий. Для большинства стандартных статистических методов существуют пакеты программ, хотя им порой не хватает гибкости, которую в идеале они должны были бы допускать. Для большинства задач с небольшими объемами данных и с относительно простыми методами обработки вполне достаточно обычного калькулятора. Для данных среднего объема лучше пользоваться пакетами стандартных программ. Однако следует избегать использования сложных методов анализа только потому, что имеются соответствующие программы (6).

На сегодняшний день лидером среди программ статистической обработки данных в среде Windows является пакет программного обеспечения (ППО) STATISTICA, который имеет более 250 тыс. зарегистрированных пользователей во всем мире и является наиболее динамично развивающимся пакетом на рынке статистического программного обеспечения. Разработчиком STATISTICA является фирмаStatSoft, Inc., (США). Первая версия системы STATISTICA для DOS, вышедшая в 1991 году, представляла собой новое направление развития статистического программного обеспечения. В ней реализован так называемый графически-ориентированный подход к анализу данных (5,6).

Однако при использовании ППО STATISTICA, как и при работе с любыми другими пакетами статистических программ, принятие решений остается за исследователем. Программа освобождает исследователя от рутинной вычислительной работы, но интерпретация полученных результатов зависит от его опыта и знаний.

Применение статистики в медицинских и биологических исследованиях не ограничивается анализом результатов. Статистические методы следует использовать также на этапе планирования биологического эксперимента или медицинского исследования. Следует подчеркнуть, что с точки зрения клинической эпидемиологии для получения надежных, научно обоснованных результатов необходимы 2 компонента:

· правильное планирование структуры исследования (обеспечивающей возможность получения ответов на поставленные вопросы)

· грамотный статистический анализ (6).


Статистика в медико-биологическом исследовании

statistica статистика медицинский биологический

Всякое исследование должно удовлетворить следующим требованиям:

1. целеустремленность (конкретность задач). При анализе полученных данных могут быть выявлены и дополнительные результаты, не запланированные в исследовании (вторичные данные), однако обычно они представляют меньшую ценность, чем основные (соответствующие поставленной цели) результаты проводимого эксперимента.

2. эффективность, т. е. полученные выводы должны быть достоверны. Достоверность медико-биологических экспериментов обычно оценивается 5% уровнем значимости, и полученные значения, вероятность ошибки 1 рода для которых менее 5 %, автоматически выделяются в STATISTICA красным цветом шрифта. Однако, величина р может составлять 0,049; такое различие статистически значимо, но настолько близко к пороговой величине (0,05), что практически не отличается от, к примеру, 0,051, т. е. статистически незначимого уровня. Наличие подобной условной черты (0,05) представляет собой одну из проблем при использовании величины р.

3. экономность (минимальная затрата сил и средств, риску подвержено минимальное количество участников (как людей, так и животных)). Экономность может быть достигнута подбором минимальной численности групп, достаточной для получения достоверных результатов (5, 6, 8, 10).

4. Полученная последовательность случайных чисел может использоваться разными способами:

5. — четные числа могут соответствовать одной группе, а нечетные — другой (в случае двух групп);

—при числах в диапазоне от 0 до 99, числа меньшие 50, могут соответствовать одной группе, а большие или равные 50 — другой (в случае двух групп);

В результате простой рандомизации группы могут значительно различаться по числу участников, причем различие оказывается весьма существенным, если выборки невелики по объему. В связи с этим простую рандомизацию рекомендуется использовать лишь в масштабных КИ (7).

Формулирование целей
Планирование
Выполнение (сбор данных)
Подготовка данных
Анализ данных
Интерпретация результатов
Формулировка выводов
Публикация
Актуально: