Поверочный тепловой расчет топки парового котла
КУРСОВОЙ ПРОЕКТ
«Поверочный тепловой расчет топки парового котла»
Вариант № 29
Задание
Произвести поверочный тепловой расчет отдельных поверхностей нагрева и свести тепловой баланс котла ТП-230:
Характеристика котла ТП-230
1. Номинальная паропроизводительность Dном=229 т/ч= 63,6 кг/с;
2. Температура перегретого пара tпп=509°С;
3. Давление перегретого пара рпп=12,6 МПа;
4. Давление в барабане котла рбар=13,6 МПа;
5. Температура питательной воды tпв=219°С;
6. Давление питательной воды рпв=11,5 МПа;
7. Вид топлива: бурый уголь, месторождение Анадырское, марка-3Б, класс-Р;
8. Топка имеет металлическую наружную обшивку.
1. Описание конструкции котла
По характеру движения рабочей среды парогенератор ТП-230 относится к агрегатам с естественной циркуляцией. Рабочая среда непрерывно движется по замкнутому контуру, состоящему из обогреваемых и не обогреваемых труб, соединенных между собой промежуточными камерами - коллекторами и барабанами. В обогреваемой части контура вода частично испаряется, образовавшийся пар отделяется от воды в барабанах и, пройдя через пароперегреватель, подается на турбину. Испарившаяся часть котловой воды возмещается питательной водой, подаваемой питательным насосом в водяной экономайзер и далее в барабан.
Парогенератор ТП-230 выполнен по П-образной схеме. В одной его вертикальной шахте расположена топочная камера, в другой экономайзер и воздухоподогреватель, вверху в поворотном горизонтальном газоходе размещается конвективный пароперегреватель.
Характерной особенностью парогенераторов этой серии является наличие двух барабанов, соединенных по пару и воде между собой пароперепускными трубами. Начальная стадия отделения пара от воды происходит в основном в разделительном барабане меньшего диаметра. Последующее осушение пара происходит в основном барабане большего диаметра. Водоопускные трубы включены в основной барабан около его нижней образующей.
Размещение над топочной камерой двух барабанов хорошо компонуется с конструкцией топочных экранов. Сверху топка ограничивается потолочными трубами, которые являются продолжением труб фронтального экрана и включаются верхними концами непосредственно в разделительный барабан.
Дымовые газы выходят из топочной камеры через разведенные (фестонированные) в 4 ряда трубы заднего экрана, также включенные верхними концами в разделительный барабан.
Подъемные трубы работают друг с другом параллельно, однако их конфигурация, длина, освещенность факелом различна. Для обеспечения надежной циркуляции их группируют в отдельные контуры. В контур циркуляции включают подъемные трубы, идентичные по своему гидравлическому сопротивлению и тепловой нагрузке. Каждый отдельный контур имеет свои опускные трубы. В котле ТП-230 16 контуров циркуляции: по 3 контура на боковых экранах и по 5 на фронтовом и заднем экранах.
Пароперегреватель чисто конвективного типа. Регулирование температуры перегретого пара производится двумя пароохладителями поверхностного типа. Охлаждение и частичная конденсация пара осуществляется за счет нагрева части питательной воды, отводимой с этой целью из питательной линии в пароохладитель.
Двухступенчатый экономайзер, служащий для подогрева питательной воды уходящими газами, состоит из отдельных пакетов змеевиков.
Трубчатый воздухоподогреватель, предназначенный для нагрева дутьевого воздуха, транспортирующего угольную пыль при сжигании твёрдого топлива и подаваемого в зону горения топлива, состоит из двух ступеней, между которыми размещается нижняя часть (ступень) экономайзера.
2. Расчет объемов продуктов сгорания, объемных долей трехатомных газов и концентраций золовых частиц в газоходах котла. Расчет энтальпий воздуха и продуктов сгорания топлива
2.1 Расчетные характеристики топлива
По табл. I (2), определяем состав рабочей массы топлива, %:
− влажность WP=22,0;
− зольность AP=13,3;
− сера +=0,6;
− углерод CP=47,9;
− водород HP=3,7;
− азот NР=0,7;
− кислород OP=11,8.
Низшая теплота сгорания =17,92 МДж/кг.
Приведенные характеристики, %∙кг/МДж:
− влажность WП=5,14;
− зольность АП=3,10.
Коэффициент размолоспособностиКло=1,0.
Выход летучих на горючую массу =47,0 %.
Температура начала размягчения золы t2=1460°С; начала жидкоплавкого состояния золы t3=1500 °С.
2.2 Теоретический объем воздуха
Теоретический объем воздуха , м3 возд/кг, необходимый для сжигания 1 кг топлива при a=1 и нормальных физических условиях (t=0 °С, р=101325 Па), определяем по формуле (2.1) (2):
м3/кг.
2.3 Теоретические объемы продуктов сгорания
Теоретические объемы продуктов сгорания, получаемые при полном сжигании 1кг топлива с теоретическим количеством воздуха, м3/кг, определяем по формулам (2,2)¸(2,5) (2):
2.4 Коэффициент избытка воздуха
Коэффициент избытка воздуха на выходе из топки для камерной топки с твердым удалением шлака принимаем по таблице, 1.7 (2), aт=1,2.
Присосы воздуха в газоходах котла (на выходе из газохода) принимаем по табл. табл. 1.8 (2):
− присосы воздуха в топку;
− присосы воздуха в фестон;
− присосы воздуха в пароперегреватель I ст. ;
− присосы воздуха в пароперегреватель II ст. ;
− присосы воздуха в экономайзер II ст. ;
− присосы воздуха в воздухоподогреватель II ст. ;
− присосы воздуха в экономайзер I ст. ;
− присосы воздуха в воздухоподогреватель I ст. ;
− присосы воздуха в систему пылеприготовления.
2.5 Объемы продуктов сгорания
Объемы продуктов сгорания, объемные доли трехатомных газов и концентрации золовых частиц по газоходам котла представлены в табл. 2.1
Таблица 2.1
Объемы продуктов сгорания, объемные доли трехатомных газов и концентрации золовых частиц
Величина и расчетная формула | Газоход | ||||||
топка, фес- тон | п/п I ст. | п/п II ст. | эк. II ст. | вп. II ст. | эк. I ст. | вп. I ст. | |
1. Коэффициент избытка воздуха за поверхностью нагрева a¢¢=aт+ ΣΔai | 1,2 | 1,215 | 1,23 | 1,25 | 1,28 | 1,3 | 1,33 |
2.Средний коэффициент избытка воздуха в поверхности нагрева aср=(a¢+a¢¢)/2 | 1,2 | (1,2+ +1,215)/2= 1,2075 | (1,215+ +1,23)/2= =1,2225 | (1,23+ +1,25)/2= =1,24 | (1,25+ +1,28)/2= =1,265 | (1,28+ +1,3)/2= =1,29 | (1,3+ +1,33)/2= =1,315 |
3.Объём водяных паров, м3/кг = + +0,0161(aср-1)∙ | 0,778 | 0,778 | 0,779 | 0,781 | 0,783 | 0,785 | 0,787 |
4.Полный объём газов, м3/кг VГ= + +1,0161(aср-1)∙ | 6,500 | 6,537 | 6,612 | 6,698 | 6,822 | 6,945 | 7,069 |
Величина и расчетная формула | Газоход | ||||||
топка, фес- тон | п/п I ст. | п/п II ст. | эк. II ст. | вп. II ст. | эк. I ст. | вп. I ст. | |
5. Объёмная доля водяных паров =/VГ | 0,120 | 0,119 | 0,118 | 0,117 | 0,115 | 0,113 | 0,111 |
6. Доля трёхатомных газов и доля водяных паров rП= + | 0,258 | 0,257 | 0,254 | 0,251 | 0,247 | 0,243 | 0,239 |
7. Масса дымовых газов при сжигании твёрдого и жидкого топлива Gг=1-0,01AP + +1,306∙aср∙ , кг/кг При сжигании газа: Gг=+(dГ/1000)+ +1,306 ∙aср ∙, кг/м3 | 8,493 | 8,540 | 8,636 | 8,747 | 8,906 | 9,065 | 9,357 |
8. Безразмерная концентрация золовых частиц, кг/кг µзл= APaун/(100∙Gг), где aун– доля уноса золы из топки (см. табл. 4.6(2)), aун= 0,95. | 0,0149 | 0,0148 | 0,0146 | 0,0144 | 0,0142 | 0,0139 | 0,0135 |
2.6 Энтальпии теоретических объемов воздуха и продуктов сгорания
Таблица 2.2 Энтальпии продуктов сгорания, кДж/кг (H- - таблица)
Поверхность нагрева | ",°С | НГВ=(a− − 1)· | НГ=+ +(a−1)·+ +Нзл | Нзл | ||
Топочная камера, фестон=1,2 | 2200 2000 1800 1600 1400 1200 1000 800 | 20852 18755 16679 14613 12592 10628 8682 6781 | 16554 14919 13294 11693 10102 8535 6997 5494 | 3310,8 2983,8 2658,8 2338,6 2020,4 1707,0 1399,4 1098,8 | 24162,8 22056,2 19614,0 17188,6 14812,4 12487,4 10205,7 7976,7 | 317,4 276,2 237,0 200,0 152,4 124,3 96,9 |
Пароперегреватель I ст. =1,215 | 1000 800 | 8682 6781 | 6997 5494 | 1504,4 1181,2 | 10310,7 8059,1 | 124,3 96,9 |
Пароперегреватель II ст. =1,23 | 1000 800 600 400 | 8682 6781 4954 3210 | 6997 5494 4039 2637 | 1609,3 1263,6 929,0 606,5 | 10415,6 8141,5 5953,8 5606,0 | 124,3 96,9 70,8 45,5 |
Экономайзер II ст. =1,25 | 800 600 400 200 | 6781 4954 3210 1560 | 5494 4039 2637 1299 | 1373,5 1009,8 659,3 324,8 | 8251,4 6034,6 3914,8 3890,7 | 96,9 70,8 45,5 21,4 |
Воздухоподогреватель II ст. =1,28 | 600 400 200 | 4954 3210 1560 | 4039 2637 1299 | 1130,9 738,4 363,7 | 6155,7 3993,9 1945,1 | 70,8 45,5 21,4 |
Экономайзер I ст. =1,3 | 600 400 200 100 | 4954 3210 1560 770 | 4039 2637 1299 646 | 1211,7 791,1 389,7 193,8 | 6236,5 4046,6 1971,1 974,0 | 70,8 45,5 21,4 10,2 |
Воздухоподогреватель I ст. =1,33 | 400 200 100 | 3210 1560 770 | 2637 1299 646 | 870,2 428,7 213,5 | 4125,7 2010,1 993,4 | 45,5 21,4 10,2 |
Энтальпии теоретических объемов воздуха и продуктов сгорания и , определяем потабл. п. 4.2 (2). Энтальпию продуктов сгорания НГ, кДж/кг, при коэффициенте избытка воздуха a > 1 определяем по формуле (2.18) (2).
Примечание. Энтальпии дымовых газов и воздуха и(без учёта энтальпии золы) при a=1 и влагосодержании воздуха 10 г/кг представлены в табл. П 4.2 (2).
Энтальпию золы Нзл, кДж/кг, определяем по формуле (4-24) (1).
где (c)зл− энтальпия 1 кг золы, кДж/кг, определяется по табл. XIV (1).
Результаты расчета энтальпий продуктов сгорания при действительных избытках воздуха в газоходах приведены в таблице 2.2 настоящего расчета.
3. Тепловой баланс котельного агрегата и определение расхода топлива
3.1 Тепловой баланс котельного агрегата
Составление теплового баланса котельного агрегата заключается в установлении равенства между поступившим в агрегат количеством тепла, называемым располагаемым теплом, и суммой полезно использованного тепла и тепловых потерь. На основании теплового баланса вычисляются КПД котла и необходимый расход топлива.
Располагаемую теплоту 1 кг сжигаемого топлива , кДж/кг, определяем по формуле (3.4) (2)
где − низшая теплота сгорания рабочей массы топлива, МДж/кг;
− физическая теплота топлива, кДж/кг, учитывается для жидких и сильновлажных твердых топлив, когда WР>1,6. Для Анадырского угля марки 3Б принимаем =0;
Qвнш − теплота, подводимая к воздуху от внешнего источника, кДж/кг, Qвнш = 0;
Qпф − теплота, вносимая в топку при распылении мазута паром, кДж/кг, Qпф = 0;
Qк − теплота, поглощаемая при сжигании сланцев, кДж/кг, Qк =0.
3.2 Потери теплоты от химического и механического недожога
Потери теплоты от химического и механического недожога топлива q3 и q4 определяются по табл. 4.6 (2). Принимаем для твердого топлива q3 = 0, q4 = 1 %.
3.3 Потеря теплоты с уходящими газами
Потерю теплоты с уходящими газами q2, %, определяем по (3.2) (2).
где – коэффициент избытка воздуха за воздухоподогревателем;
− энтальпия уходящих газов при коэффициенте избытка воздуха aух и температуре уходящих газов tух;
− энтальпия теоретически необходимого количества холодного воздуха на входе в воздушный тракт (перед калорифером или вентилятором), кДж/кг. Принимаем tхв= 60°С;
− потери теплоты с механическим недожогом топлива, %.
По табл. 1.4 (2) принимаем tyx=160 °С.
Энтальпию уходящих газов при tyx=160 °C определяем по табл. 2.2 настоящего расчета методом интерполяции.
.
Энтальпию холодного воздуха определяем по формуле (3.3) (2):
где tхв=60°С − температура холодного воздуха, принимается по (1), стр. 29; табл. 1.5 (2):
3.4 Потеря теплоты от наружного охлаждения
Потеря теплоты q5 от наружного охлаждения через внешние поверхности котла при номинальной производительности котла Dном = 229 т/ч =63,6 кг/с определяем по формуле (3.11) (2):
3.5 Потеря с теплом шлаков
Потеря с физической теплотой удаляемых шлаков q6 при камерном сжигании с твёрдым шлакоудалением учитывается только для многозольных топлив, когда АР>2,5, в соответствии с п. (3.1) (2) Принимаем q6=0.
3.6 Коэффициент полезного действия котла
Коэффициент полезного действия котла определяем по формуле (3.1) (2):
ηк=100-(6,03+0+1+0,54+0)=92,44 %.
3.7 Расход топлива
Расход топлива B, кг/с, подаваемого в топочную камеру парового котла определяем по формуле (3.14) (2):
где Dпе = Dном – расчетная паропроизводительность котла, кг/с;
– энтальпия соответственно перегретого пара, питательной воды и кипящей воды в барабане парового котла, кДж/кг;
– расход вторично перегреваемого пара, кг/с, (Dвт=0);
– энтальпия вторично перегреваемого пара соответственно на входе и на выходе из пароперегревателя, кДж/кг;
расход продувочной воды из барабанного парового котла, кг/с
Расход продувочной воды из барабана котла определяем по формуле (3.15) (2):
где р = 3% – непрерывная продувка котла, принимается в соответствии с п. 4.8.27 ПТЭ.
При давлении перегретого пара рпп=12,6 МПа и tпп=509°С по табл. XXV (1) определяем hпп=3392,35кДж/кг.
При давлении питательной воды рп.в.=11,5 МПа и tп.в.=219°С по табл. XXIV (1) определяем hп.в.=941,93 кДж/кг.
При давлении в барабане котла рбар=13,6 МПа, tн=334,34°С, по табл. XXIII (1) определяем hкип=1556,9 кДж/кг.
Рассчитываем расход топлива:
Расчетный расход топлива с учетом механического недожога определяем по формуле (3.16) (2):
Коэффициент сохранения теплоты рассчитываем по формуле (4.24) (2):
4. Расчет теплообмена в топке
4.1 Геометрические характеристики топки
Геометрические характеристики топки определяем по чертежу котла ТП-230, учитывая рекомендации, изложенные в § 4.1 (2).
При расчёте теплообмена в топочной камере её объём , м3, определяется по чертежам котла. Границами объёма являются осевые плоскости экранных труб или обращённые в топку поверхности защитного огнеупорного слоя; в местах, не защищённых экранами – стены топочной камеры. В выходном сечении камеры её объём ограничивается плоскостью, проходящей через оси первого ряда труб ширм, фестона или котельного пучка. Нижней границей объёма топки является под. При наличии холодной воронки за нижнюю границу объёма топки условно принимается горизонтальная плоскость, отделяющая её нижнюю половину (см. рис. 6.1 (1)).
1) Площади поверхностей стен:
где площадь соответственно задней, фронтовой и боковой стены, м2;
площадь фестона (плоскость проходящая через оси первого ряда труб фестона), м2;
м2 ширина топочной камеры;
м2 глубина топочной камеры.
Полная поверхность стен:
Поверхность стен, занятая горелками:
где м – диаметр выходной амбразуры горелки.
Поверхность стен, занятая экранами:
2) Объем топочной камеры:
3) Лучевоспринимающую поверхность стен определяем по формуле (6-06а) (1):
где – площадь i-ой стены, занятая экраном, м2;
– угловой коэффициент i-го экрана (см. номограмму 1 (1)).
Угловой коэффициент гладкотрубных экранов определяется в зависимости от их конструкции (см. п. 6-06 (1)).
Для фестона =1. Для настенных топочных экранов угловой коэффициент можно рассчитать по формуле (4.31) (2). Диаметр и шаг труб всех экранов одинаковы. Поэтому лучевоспринимающая поверхность экранов вычисляется совместно по одному значению углового коэффициента . Диаметр экранных труб d = 76 мм, шаг труб S = 95 мм, S/d = 1,25. Относительное расстояние от труб до стены /d = 57,5/76 » 0,8.
= 1- 0,2(S/d- 1) = 1- 0,2(95/76 - 1) = 0,95,
где S/d – относительный шаг труб настенного экрана;
3) Определяем степень экранирования топки:
4) Эффективная толщина излучающего слоя топки рассчитывается по формуле (6-07) (1):
где – объём топочной камеры, м3; Fст − полная поверхностьстен топки, м2.
5) Расчетное тепловое напряжение топочного объема определяем по формуле (4.8) (2):
Допустимое тепловое напряжение топочного объема определяем по табл. XVIII (1): =180 кВт/м3. нормативное требование выполняется.
4.2. Коэффициент теплового излучения топочной камеры
Коэффициент теплового излучения топочной камеры xт введен вместо применявшейся ранее степени черноты топки eт. Он является радиационной характеристикой излучающего тела и зависит только от его физических свойств и температуры.
Поглощательная способность (степень черноты) eт характеризует степень поглощения падающего излучения и дополнительно зависит от спектра этого излучения. Для серых и черных тел эти два коэффициента xт и eт численно равны. Для определения температуры газов на выходе из топки рассчитывают коэффициент теплового излучения топки xт.xт определяется коэффициентом излучения газового факела xф, заполняющего топочный объем, и тепловой эффективностью экранных поверхностей yср. xтрассчитывается по формуле (4.36)(2):
где – коэффициент излучения газового факела;
– коэффициент тепловой эффективности экранных поверхностей.
Коэффициент излучения газового факела xф зависит от температуры газов на выходе из топки (от абсолютной температуры газов на выходе из топки). При выполнении расчётов сначала задаются по табл. 4.7 (2) (см. стр. 38, 39 (2)), а затем рассчитывают её значение. Принятое и расчётное значение не должны отличаться более чем на 100 °С.
1) Коэффициент излучения газового факела при сжигании твердых топлив определяем по формуле (4.37) (2):
где – оптическая толщина поглощения топочной среды;
– коэффициент ослабления (поглощения) лучей топочной средой, 1/(м ∙МПа);
– давление газов в топочной камере, МПа, для топок, работающих под разрежением и с наддувом не более 5 кПа, принимают
р= 0,1МПа;
S – эффективная толщина излучающего слоя, м. (S= 6,62 м).
Коэффициент k 1/(м∙МПа), ослабления лучей топочной средой определяем по формуле (4.39) (2):
где – коэффициент ослабления лучей трехатомными газами, 1/(м∙МПа);
– коэффициент ослабления лучей золовыми частицами, 1/(м∙МПа);
− коэффициент ослабления лучей горящими коксовыми частицами, по рекомендациям, изложенным в (2) стр. 43, принимаем =0,5 1/(м∙МПа).
По формуле (4.40) (2) определяем коэффициент ослабления лучей трехатомными газами:
Подобные работы: