Разработка методов и средств реабилитации объектов отравляющих веществ
Обеспечение безопасности людей и защита окружающей среды (ОС) являются основополагающими требованиями Конвенции о запрещении разработки, производства, накопления и применения химического оружия и о его уничтожении (1). Функционирование системы безопасности при проведении работ с химическим оружием (ХО) в России регламентируется нормативными правовыми актами (2,3) и федеральной целевой программой «Уничтожение запасов ХО в Российской Федерации» (4). К актуальным задачам Программы (4) относятся:
- мероприятия по созданию государственной системы мер по охране ОС и обеспечению экологической безопасности при проведении работ по хранению и уничтожению ХО;
- проведение работ по санации загрязненных территорий после уничтожения ХО категории 1.
Разработка методов и средств реабилитации объектов ОС в районах расположения объектов по хранению и уничтожению ХО является приоритетным направлением исследований в области обеспечения экологической безопасности (5).
Анализ тенденций развития исследований в области защиты ОС показывает, что, наряду с совершенствованием существующих методов, большое внимание уделяется биотехнологии санации почв, за которыми признается несомненный приоритет по показателям эффективности и экономичности. Такие методы экологически безопасны и выгодно отличаются по сравнению с другими отсутствием вторичных отходов, т.е. возможностью полной минерализации химических соединений, выбрасываемых в окружающую среду в качестве промышленных отходов (6). Биологические методы восстановления загрязненных территорий по оценкам экспертов требуют затрат для своего применения примерно в тысячу раз меньше, чем известные небиологические технологии.
Целью работы являлась оценка возможности микробиологической деструкции метилфосфоновой кислоты и её кислых эфиров.
Для достижения поставленной цели необходимо решение следующих задач:
- анализ литературных данных о существующих технологиях реабилитации загрязненных почв;
- скрининг микроорганизмов-деструкторов фосфорорганических соединений;
- изучение возможности биодеструкции продуктов разложения фосфорорганических отравляющих веществ.
1. Литературный обзор
1.1 Возможные последствия чрезвычайных ситуаций на объектах по
хранению и уничтожению химического оружия
Ключевым звеном в ликвидации ХО является безопасность процесса уничтожения. В п. 3 статьи VII Конвенции о запрещении ХО определено, что в ходе выполнения обязательств каждое государство-участник Конвенции «уделяет первостепенное внимание обеспечению безопасности людей и защите окружающей среды». В соответствии с Федеральной целевой программой «Уничтожение запасов химического оружия в Российской Федерации», утвержденной постановлением Правительства РФ № 969 от 29 декабря 2007 г., необходимо выполнение следующих мероприятий по обеспечению безопасности хранения и уничтожения ХО:
- организация и проведение государственной санитарно-гигиенической и экологической экспертиз предпроектных и проектных материалов по строительству объектов по УХО, а также технической и эксплуатационной документации на технологическое оборудование этих объектов;
- метрологическая аттестация технологического оборудования, используемого для мониторинга окружающей среды и контроля за состоянием здоровья граждан на объектах по хранению ХО, объектах по УХО, а также при уничтожении объектов по его производству и разработке;
- оснащение современными автоматическими системами охраны, сигнализации и видеонаблюдения объектов по хранению ХО и объектов по УХО;
- оснащение современными автоматизированными системами управления технологическими процессами объектов по УХО;
- внедрение технологий, безопасных в промышленном, пожарном и экологическом отношении, а также экономически приемлемых для УХО, полностью исключающих или в максимальной степени снижающих негативное воздействие на здоровье человека и окружающую среду;
- обеспечение промышленной (технологической), пожарной и экологической безопасности при проведении работ по хранению, перевозке и уничтожению ХО;
- проведение комплекса мероприятий по предотвращению возникновения аварий и пожаров на объектах по хранению ХО и объектах по УХО;
- использование современных систем мониторинга загрязнения окружающей среды химическими соединениями, образующимися в процессе эксплуатации объектов по хранению ХО и объектов по УХО;
- обеспечение социально-гигиенического и экологического мониторинга работ, связанных с хранением и уничтожением ХО;
- систематическая проверка технического состояния химических боеприпасов на объектах по хранению ХО и проведение необходимых работ для их поддержания в безопасном состоянии;
- своевременное выявление и уничтожение аварийных химических боеприпасов с использованием комплексов, специально предназначенных для этих целей, при соблюдении требований технологической и экологической безопасности;
- разработка комплекса мероприятий по локализации и ликвидации последствий аварий и пожаров на объектах по хранению ХО и объектах по УХО, а также при его перевозке;
- обеспечение персонала объектов по хранению ХО и объектов по УХО, а также граждан, проживающих и работающих в зонах защитных мероприятий, индивидуальными средствами защиты, антидотами и другими необходимыми медикаментозными препаратами на случай возникновения аварийных ситуаций;
- создание локальных систем оповещения при возникновении аварийных ситуаций на объектах по хранению ХО и объектах по УХО, а также в зонах защитных мероприятий.
Объект по УХО представляет собой сложный технологический комплекс, обеспечивающий уничтожение ТХ. В процессе уничтожения ТХ возможно несанкционированное высвобождение имеющихся на объекте факторов опасности. Субъекты, на которые действуют факторы опасности в случае проектных и запроектных аварий:
- производственный персонал объекта;
- основные производственные фонды объекта;
- окружающая среда.
Проектная авария – авария, масштабы и последствия которой учитываются при проектировании и создании объекта по УХО, рассчитываются и готовятся силы и средства, необходимые для ее локализации и ликвидации последствий. Запроектная авария – авария, масштабы и последствия которой можно только предполагать, готовность сил и средства для ликвидации последствий таких аварий на объекте может составлять часть от необходимого.
Распространение высвобождающегося при запроектной аварии ТХ зависит от состояния атмосферы. В условиях конвекции, когда почва нагрета сильнее воздуха, восходящие потоки вызывают быстрое «размывание» облака. Напротив, при инверсии (почва холоднее воздуха) наблюдаются наибольшие глубины распространения облаков. При слабом ветре облако зараженного воздуха затекает в лощины и обходит холмы, так как пары ТХ тяжелее воздуха и «стелются» по поверхности земли. Глубина распространения значительно снижается при наличии лесного покрова (примерно в 1,5 раза) по сравнению с распространением над равнинной местностью. При инверсии глубина распространения облака увеличивается примерно в 1,7 раза по сравнению с изотермией, а при конвекции уменьшается, что является вполне естественным. Чем неустойчивее атмосфера, тем интенсивнее идет перемешивание воздуха и тем быстрее разбавляется в нем примесь ТХ, следовательно, тем меньше будет глубина распространения действующих концентраций ТХ в облаке, способных нанести ту или иную степень поражения.
При устойчивой атмосфере отсутствуют значительные вертикальные перемешивания и движения, и температурный градиент атмосферы будет меньше, чем сухоадиабатический вертикальный градиент. Температурный градиент атмосферы может отличаться от сухоадиабатического в обе стороны и изменяться в широких пределах (до 20 °С/100 м) (7,8).
Одним из признаков инверсии является наличие нисходящих потоков воздуха, и, следовательно, его сжатие и нагревание, как, например, в антициклонах. Этому сопутствуют повышение давления и установление ясной погоды. Состояние атмосферы в этом случае характеризуется как очень устойчивое. В зонах атмосферных фронтов температурная инверсия может создаться в результате натекания теплоговоздуха на нижерасположенный слой холодного. Другим типом инверсии являются радиационные инверсии, образующиеся ночью, после дневного прогрева земной поверхности. Ночью поверхность земли излучает тепло и быстро остывает. Одновременно остывает и прилегающий к ней слой воздуха – сверху он прикрывается более теплым инверсионным слоем. Радиационные инверсии создаются в том слое атмосферы, который содержит загрязнения, способствуя тому, что загрязняющие вещества не рассеиваются и надолго задерживаются в окружающем воздухе. Кроме того, они образуются как раз в то время, когда маловероятна очистка атмосферы осадками.
В качестве наиболее вероятных путей поступления фосфорорганических ТХ в атмосферу можно выделить: высокотемпературные выбросы в атмосферу, которые могут быть кратковременными или продолжительными (взрывы, пожары); вылив больших количеств вещества на различные поверхности с последующим испарением.
Масштабы последствий аварий зависят от размеров возникшего при авариях (разрушениях) и распространяющегося в атмосфере облака зараженного воздуха. Так, результаты моделирования последствий пожара с вовлечением ФОВ свидетельствуют о поднятии перегретой примеси за счет действия архимедовой силы на большую высоту со значительной скоростью ветра и развитой турбулентностью. Это приводит к относительно быстрому формированию зоны заражения на значительном удалении от источника.
Расчеты зон заражения для разных вариантов возможных аварий с ФОВ на объекте 1205 в п. Марадыковский по методике (9 - 12) дали величины максимальной глубины зон заражения (токсодоз ОВ, равных или выше пороговых) от 0,9 до 3,8 км при авариях на объекте по УХО и от 1,3 до 17,7 км при более серьезных авариях (разлив 20 тонн зомана) на объекте по хранению ХО.
Расчет по методике (13) при значительно меньших количествах пролитого ОВ (2 т по сравнению с 20 т в примере выше) глубина распространения поражающих концентраций зарина достигает 40 км для пороговых концентраций или ~ 7 км для выводящих из строя концентраций ОВ. Для случая разлива зомана получены глубины распространения более 43 км и около 2,8 км, при которых возможно получение пороговых и выводящих из строя доз соответственно. Расчетная площадь очага поражения в этих случаях будет составлять: 770 км2 или 22 км2 для зарина и 944 км2 или 4,1 км2 для зомана.
Размеры зон защитных мероприятий (ЗЗМ) утверждены Постановлениями Правительства РФ (14) и, в частности, для п. Марадыковский Кировской области площадь ЗЗМ составляет 891,7 км2.
Оценка возможного уровня токсического воздействия на население в случае реализации конкретного аварийного события осуществляется с использованием известных моделей распространения ОВ в различных природных средах (15-17). В рамках этих моделей может быть проведен расчет размеров возможных зон для разных уровней вероятностей локального поражения. При прогнозировании последствий конкретной рассматриваемой аварийной ситуации в отличие от правил расчета локальных рисков не должны учитываться преимущественные направления ветров. Поскольку в момент аварии направление ветра может быть любым, а прогноз выполняется по наиболее тяжелым возможным последствиям, то и направление распространения зараженного первичного и вторичного облаков ОВ должны выбираться в сторону наиболее населенных территорий вблизи объекта. В качестве модельной аварии рассмотрим взрыв (например, установленной противотанковой мины) на складе, содержащем РБК-500, что привело к разрушению (пролому) крыши здания. При этой ситуации произошла детонация зарядов внутренних элементов в 100 изделиях РБК-500, в результате чего произошла разгерметизация корпусов РБК-500 и утечка из них 2370 кг вещества Vx в виде аэрозоля. Резкое увеличение давления внутри склада привело к выходу облака аэрозоля Vx через пролом в крыше склада в окружающую среду. Параметры модели взяты из работы (18). В качестве условного направления распространения ОВ взято направление на северо-восток (юго-западный ветер), способное привести к наибольшему ущербу.
Расчетные оценки локального ущерба от чрезвычайной ситуации на объекте по УХО показывают, что при наиболее неблагоприятных метеоусловиях в зону смертельного поражения попадает целый ряд крупных населенных пунктов. В зависимости от направления ветра, это могут быть п. Мирный (расстояние 1-2 км, 5000 жителей), сёла Юрьево и Ленинская Искра Котельничского района (13 км), куст деревень вокруг с. Истобенск (8-16 км) и др. Зона, характеризующаяся высоким показателем локального ущерба (более 50%), при восточном ветре может достичь г. Котельнича, а при юго-западном ветре - г. Орлов (расстояние 24 км). В последнем случае при ингаляционном воздействии доля пораженного населения в кусте деревень в районе с. Истобенск будет достигать 100 % и свыше 50 % для г. Орлов.
Попадающий в зону воздействия выбросов г. Котельнич - районный центр Кировской области c населением около 28000 человек. Доля пораженного населения г. Котельнича при ингаляционном воздействии будет достигать 100 % в восточной части города на расстоянии до 21 км от источника.
Приведенные данные свидетельствуют о возможном обширном загрязнении территорий в районах хранения и УХО в случае запроектных аварий.
1.2 Трансформация фосфорорганических отравляющих веществ в
объектах окружающей среды
Под трансформацией токсичных химикатов в ОС понимают совокупность абиотических и биотических процессов, приводящих к образованию (19):
- либо более токсичных продуктов, в том числе обладающих отдаленными эффектами или новыми свойствами;
- либо продуктов с более выраженными влиянием других критериев опасности;
- либо продуктов, токсичность которых близка к токсичности исходных химикатов;
- либо менее токсичных продуктов.
Основными компонентами объектов ОС, в которых возможно протекание химических реакций трансформации ФОВ под действием различных физико-химических факторов, являются почва, поверхностные и подземные воды, воздух, растительный и животный мир (20,21). Загрязнение ОПС посредством распространения ОВ в атмосфере является сложным физико-химическим процессом, кинетика которого определяется следующими основными факторами:
- физико-химическими свойствами ОВ;
- типом источника поступления ОВ в ОС;
- процессами распространения ОВ в атмосфере, которые зависят от метеорологической ситуации в районе объекта хранения ОВ на момент аварии и физического состояния, в котором ОВ или продукты их фазовых и химических превращений присутствуют в атмосфере;
- процессами фазовых и химических превращений ОВ в атмосфере;
- процессами фазовых и химических превращений ОВ при их взаимодействии с почвой.
ТХ Vx, растворенный в воде, относительно стоек к гидролизу. Гидролиз протекает несколькими путями с образованием различных продуктов деструкции (рисунок 1).
Рисунок 1 - Гидролиз Vx (22)
В нейтральной и слабощелочной среде происходит разрыв связи Р-О с образованием S-2-(N,N-диизопропиламино)этил тиоэфира МФК (II), который гидролизуется до МФК (III) и диизопропил-(2-меркаптоэтил)амина (IV). Данное соединение может быть окислено до бис-(2-(N,N-диизопропиламино)этил)дисульфида (V).
В кислой и щелочной среде вышеизложенный путь конкурирует с гидролизом по связи Р-S с образованием этилового эфира МФК (VI), который далее гидролизуется до МФК (III). При рН £ 7 и реальных зимних и летних температурах воды гидролиз Vx (таблица 1) может продолжаться длительное время (23), что совпадает с данными (22).
Таблица 1 – Зависимость скорости гидролиза Vx от величины рН при 25 °С
Показатели | Значения рН и τ50 | ||||
рН | 2-3 | 7 | 9,5 | 10 | 13 |
τ50, ч | 24000,0 | 8400,0 | 18,3 | 11,0 | 0,3 |
Подобные работы: