Гидравлический расчет конденсатной системы трубопровода
1. Назначение и краткое описание конденсатной системы
2. Исходные данные для расчета конденсатной системы
2.1 Конденсатная система
2.2 Маслоохладитель
2.3 Конденсатор ВОУ
3. Расчет потерь
3.1 Расчет потерь напора в конденсатной магистрали
Участок 1–2
Участок 2–3
Расчет теплообменного аппарата: Конденсатор ВОУ
Сопротивление клапана
Участок 2–3 (от МО до КВОУ)
Участок 3–4
Расчет теплообменного аппарата: Маслоохладитель
Сопротивление клапана
Участок 3-4 (от тройника до МО)
Участок 4–5
3.2 Расчет потерь всасывающей магистрали
Участок 5–6
4. Характеристика сети
4.1 Нахождение полного коэффициента сопротивления системы
4.2 Нахождение полного напора насоса для разных расходов в системе
4.3 График зависимости характеристики сети
5. Заключение
6.Список используемой литературы
Введение
Целью работы является закрепление знаний по основам теории судовых гидравлических трубопроводных систем, а также практическое овладение навыками для выполнения необходимых расчетов трубопроводных систем.
В качестве системы, предназначенной для учебного расчета, выбрана конденсатная система судна. Это объясняется двумя причинами: во-первых, это наиболее важная система с точки зрения функционирования судовой энергетической установки (СЭУ); во-вторых, она наиболее разветвленная, что представляет определенный интерес с точки зрения выполнения гидравлических расчетов.
И так, главной задачей гидравлического расчета трубопровода будем считать определение диаметра труб и гидравлических характеристик системы, т.е. расхода и напора жидкости в трубопроводах на основных режимах работы системы. По полученным гидравлическим характеристикам в дальнейшем произведем выбор главного механизма, обслуживающего систему. Между гидравлическими характеристиками трубопроводами и характеристиками механизма должно быть полное соответствие на основных режимах работы системы.
Необходимый напор и производительность системы обеспечиваются в том случае, если расход жидкости и полное сопротивление в трубопроводной системе с учетом избыточного давления у потребителя и высоты подъема жидкости равны соответственно производительности и напору механизма, т. е. выполняются условия материального и энергетического балансов системы и механизма. При несоблюдении равенства будет наблюдаться либо перегрузка механизма, либо снижение напора и расхода в трубопроводе.
Основным моментом в гидравлическом расчете будет являться определение полного сопротивления движения жидкости.
1. Назначение и краткое описание конденсатной системы
В данной курсовой работе приведен расчет конденсатной гидравлической трубопроводной системы. Назначение данной системы состоит в приеме, хранении и подаче рабочего тела, в рассматриваемом случае конденсатной воды, к подогревателям, различным фильтрам элементам управления регулирования и защиты СЭУ, парогенерирующей установке. На чертеже конденсатной системы (см. приложение 1) приведены несколько упрощенная схема конденсатной системы, т.к. часть оборудования и элементов опущена.
На указанном чертеже показаны основные элементы рассматриваемой системы: главный конденсатор, маслоохладитель, конденсатный насос, маслоохладитель, фильтр ионной очистки, деаэратор, конденсатор водоопреснительной установки.
К данной системе применяются следующие требования морского регистра судоходства. Конденсатная система паротурбинных установок должна обслуживаться двумя конденсатными насосами. Подача каждого насоса не менее чем на 25 % должна превышать максимальное количество конденсата отработавшего пара, поступающего в конденсатор. В установках с двумя главными конденсаторами, размещенными в одном машинном отделении, резервный конденсаторный насос может быть общим для обоих конденсаторов.
2. Исходные данные для расчета конденсатной системы
2.1 Конденсатная система
0,033 | 0,003 | 3,30 | 5,15 | 20,35 | 6,15 | 18,15 | 45 | 12 | 2,55 |
, | , | , | , | , | |||||
0,75 | 1,50 | 4,2 | 100 | 80 | 105 | 2,0 | 11 | 13 |
где:
— расход жидкости в системе;
— приток жидкости в систему;
— длина всасывающей магистрали системы;
— длина от конденсатного насоса КН до тройника;
— длина участка от тройника до выходного патрубка из маслоохладителя МО;
— длина участка от выходного патрубка МО до входного патрубка конденсатора водоопреснительной установки
— геометрическая высота от уровня конденсата в конденсатосборнике главного конденсатора ГК деаэраторе до ЦТ сечения входного патрубка насоса;
— геометрическая высота между ЦТ сечений напорного патрубка насоса и входного патрубка МО;
— геометрическая высота между ЦТ сечений выходного патрубка ионообменного фильтра и входного патрубка КВОУ;
- геометрическая высота от ЦТ сечений выходного патрубка КВОУ и входного патрубка деаэратора;
— гидросопротивление ИОФ;
— гидросопротивление деаэрационной головки.
— давление в деаэраторе;
— давление в ГК;
— подогрев конденсата в МО;
— подогрев конденсата в КВОУ.
2.2 Маслоохладитель
Маслоохладитель | ||||
, шт. | , м | , м | ||
270 | 2 | 2,5 | 0,013 | 0,9 |
где:
— число труб в трубном пучке;
— количество ходов охлаждающей воды;
— длина трубки
— внутренний диаметр труб пучка;
— диаметр трубной доски.
2.3 Конденсатор ВОУ
Конденсатор ВОУ | ||||
, шт. | , м | , м | ||
38 | 4 | 1 | 0,013 | 0,2 |
где:
— число труб в трубном пучке;
— количество ходов охлаждающей воды;
— длина трубки
— внутренний диаметр труб пучка;
3. Расчет потерь
3.1 Расчет потерь напора в конденсатной магистрали
Участок 1–2
1. Найдем расход на участке 1-2:
; (2, Табл. 1)
; (2, Табл. 1)
.
2. Найдем диаметр трубопровода:
Скорость в трубопроводе (Конденсатный — напорный)
(4, стр. 17)
Посчитаем диаметр трубопровода с учетом этих скоростей
; (2, стр. 14)
;
Стандартный приемлемый диаметр равен (2, стр. 14)
Посчитаем скорость с учетом уточненного диаметра
; (2, стр. 14)
3. Найдем температуру на участке 1-2:
; (2, Табл. 1)
; (5, стр. 23)
; ; (2, Табл. 1)
; ; (2, Табл. 1)
Найдем температуру на участке 2-3:
; (6)
;
;
.
Найдем температуру на участке 1-2:
; (6)
;
;
.