Вычисление электрической энергии и электрических сил
М.И. Векслер, Г.Г. Зегря
Полная энергия заряженной системы определяется как
(24) |
Она состоит из собственных энергий тел системы Wown, i и энергий взаимодействия каждого из тел со всеми остальными Wint, i, all. При необходимости можно разбить Wint, i, all на энергии попарного взаимодействия Wint, i, j. Для вычисления собственной энергии i-го тела при интегрировании учитывается только им создаваемый потенциал, а для нахождения Wint, i, all - напротив, потенциал всех тел, кроме i-го:
W | = | (25) | |
= |
При наличии заряженных точек или нитей в местах их нахождения оказывается φ = ∞. Собственные энергии таких объектов и полная энергия - формально - равны ∞, так что рассмотрению подлежат лишь энергии взаимодействия.
В случае двух тел энергия их взаимодействия - это энергия взаимодействия первого тела со вторым Wint, 1, 2 плюс равная ей энергия взаимодействия второго тела с первым Wint, 2, 1:
(26) |
Сила взаимодействия двух тел может быть найдена как сила, действующая со стороны первого тела на второе или (что - с точностью до знака - то же самое) как сила, с которой второе тело действует на первое:
(27) |
Здесь - поле, создаваемое одним первым, а - одним вторым телом.
Задача. Шар R, равномерно заряженный по объему (ρ0). Найти собственную энергию заряженного шара.
Решение: Мы должны сначала найти потенциал внутри шара, для чего ищем по теореме Гаусса поле:
= | |||
= |
Это поле мы интегрируем, получая φ(r) для r Имея потенциал и записав dq как можно найти энергию шара непосредственным интегрированием: Эта энергия совпадает с полной энергией, поскольку система состоит только из одного тела. Задача. Точечный заряд q находится на расстоянии l от проводящей плоскости. Найти энергию и силу взаимодействия заряда со своим изображением. Ответ: , , плоскости. φ(r) = dq = ρ0 r2dr sinθdθ dφ Wown =
Подобные работы: