Изучение истории становления и развития методики преподавания математики в России
Актуальность темы исследования. Отечественное математическое образование прошло длинный путь. Этапы его становления и развития интересны и весьма поучительны.
В настоящее время ведется поиск оптимального содержания математического образования. Это объясняется тем, что с начала 90-х годов прошлого века и до настоящего времени происходит непрерывное реформирование школы, которое пока не привело к каким-либо заметным положительным результатам. В течение этого времени наша школа находится на распутье: с одной стороны, она стремится к обновлению, с другой, пытается сохранить свои лучшие традиции.
Именно для того чтобы осознать настоящие и предвосхитить грядущие проблемы математического образования, вызванные в частности, модернизацией школы, необходимо представить общую и целостную картину развития математического образования в России, а для этого нужно обратиться к его периодизации.
К сожалению, в настоящее время еще нет устоявшегося подхода к определению периодизации развития математического образования.
Ряд исследователей, таких как Ю.М. Колягин, Т.С. Полякова, О.А. Саввина, О.В. Тарасова, Р.С. Черкасов, в своих работах предлагают разные подходы к периодизации развития математического образования. В научных работах И.К. Андронова и Р.С. Черкасова предприняты попытки определить не только периодизацию математического образования, но и периодизацию методики преподавания математики как науки.
Первые сведения об учении детей простейшим вычислениям встречаются в источниках по истории стран Древнего Востока. Большое влияние на развитие школьного математического образования оказала математическая культура Древней Греции, где уже в 5 веке до н.э. в связи с развитием торговли, мореплавания, ремёсел в начальной школе изучались счёт и практическая геометрия.
Содержание учебного предмета математики меняется со временем в связи с расширением целей образования, появления новых требований к школьной подготовке, изменением стандартов образования.
История отечественного математического образования является общенациональным достоянием и требует к себе крайне бережного отношения. Это отношение к ней независимо от времени должно носить в большей степени «монументальный» и «антикварный» характер, нежели «критический». Между тем нередко работы советских историков, посвященные дооктябрьскому периоду, в силу принятых в то время идеологических установок, носили преимущественно критический оттенок в противоположность апологетическому описанию развития математического образования в советское время. Поэтому остро встает проблема необходимости целостного и объективного исследования истории математического образования в школе России.
Предмет исследования: методика преподавания математики как науки;
Объект исследования: история развития и становления методики преподавания математики в России;
Цель исследования: изучение истории становления и развития методики преподавания математики в России.
Задачи исследования:
- изучение литературы по теме исследования;
- исследование методического и исторического подходов к проблеме исследования;
- анализ методики преподавания математики как науки;
- изучение исторических аспектов методики преподавания математики в России;
- анализ методики преподавания математики в начальной школе;
- изучение направлений преподавания математики на современном этапе;
Методы исследования: изучение литературы, сравнение, теоретический анализ и синтез, наблюдение;
Глава 1. Теоретические аспекты изучения проблемы исторического становления и развития методики преподавания математики в России
1.1 Исторические и методические аспекты проблемы преподавания математики в России
математика алгебра аналитический геометрия
Долгое время история математического образования не являлась специальным объектом научных исследований, и ее отдельные грани освещались либо в рамках истории развития различных учебных заведений, либо в контексте истории математики, либо на фоне материалов, посвященных персоналиям. Поэтому отрадно отметить, что на рубеже XX-XXI веков выходят фундаментальные работы по истории обучения математике в России Ю.М.Колягина и Т.С.Поляковой(3).
Несмотря на уникальность этих сочинений, все же следует отметить, что, вследствие поставленных авторами задач, они описывают историю отечественного математического образования в целом. Между тем не в меньшей степени представляется интересной история преподавания конкретных дисциплин: арифметики, алгебры, геометрии и т.д. Тем более важно исследовать эволюцию обучения высшей математике в школе, поскольку наличие этого раздела в школьном курсе на протяжении столетий вызывает у педагогов наибольшее количество споров. Даже сегодня представляется весьма затруднительным получить однозначные и исчерпывающие ответы на традиционные вопросы: «Нужна ли высшая математика в школе?», «Какие вопросы высшей математики должны найти отражение в школьной программе?», «Каким образом осуществить введение элементов высшей математики в школу?» и, наконец, «Как при этом эффективно организовать процесс обучения?». Но, несмотря на различие мнений, элементы высшей математики уже стали неотъемлемой частью школьного курса математики.
Надо признать, что деление математики на высшую и элементарную весьма условно. Действительно, одним из важнейших объектов курса высшей математики являются функции, которые параллельно могут рассматриваться и в курсе элементарной математики. Более существенным является различие методов исследования функций (в отличие от элементарной, высшая математика широко использует понятие предела, производной и интеграла). Исторически термин «высшая («вышняя») математика» начал употребляться еще в XVIII в. (Хр.Вольф, П.И. Гиларовский и др.) для обозначения двух разделов: аналитической геометрии и анализа бесконечно малых чисел. В настоящее время в Математическом энциклопедическом словаре высшая математика определяется несколько шире - как «совокупность математических дисциплин, входящих в учебный план технических и некоторых других учебных заведений». В случае такой интерпретации курс высшей математики образуют элементы аналитической геометрии, линейной алгебры, дифференциального и интегрального исчислений, теории дифференциальных уравнений. Как видим, содержание предмета высшей математики за прошедшие двести лет претерпело определенные изменения.
Детальный анализ историко-педагогической и методико-математической литературы позволяет утверждать, что приводимые в ней сведения не дают даже общей картины постановки преподавания элементов высшей математики в XVIII-XX вв. как в высшей, так и в средней школе; все эти сведения весьма разрозненны, не систематизированы, имеют расхождения в датах, описании фактов, оценке событий. Требуют уточнения, к примеру, многочисленные факты о жизни и научной деятельности таких педагогов-математиков, как С.К.Котельников, М.Г.Попруженко и многих др.; имеют место разночтения в сроках и причинах проникновения элементов высшей математики в школьный курс; встречается переоценка роли педагогов «в борьбе» за внедрение идей высшей математики в среднюю школу и т.п(12).
Сказанное во многом можно отнести и к другим разделам школьного курса математики. Таким образом, есть все основания констатировать, что в настоящее время обострились противоречия между:
- сохранением традиций отечественной системы математического образования и необходимостью ее обновления, вызванного требованиями времени (в т.ч. в контексте модернизации средней школы);
- фактическим проникновением элементов высшей математики в школьный курс и отсутствием единой теории, обосновывающей необходимость изучения высшей математики в средней школе;
- историко-культурной и педагогической потребностью в осмыслении исторического опыта обучения высшей математике в средней школе и недостатком знаний об этом важном разделе истории математического образования (в т.ч. недостаточной его освещенностью в научных исследованиях).
История развития математики – это не только история развития математических идей, понятий и направлений, но это и история взаимосвязи математики с человеческой деятельностью, социально-экономическими условиями различных эпох.
Становление и развитие математики как науки, возникновение ее новых разделов тесно связано с развитием потребностей общества в измерениях, контроле, особенно в областях аграрной, промышленной и налогообложения. Первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов. Понятие числа всегда сопровождалось и нечисловыми понятиями. Например, один, два, много… Эти нечисловые понятия всегда ограждали сферу математики. Математика придавала законченный вид всем наукам, где она применялась. В Европе сложилось разделение на гуманитарные и естественные науки по степени влияния математики на эти части.
Перед преподаванием математики в школе кроме общих целей обучения стоят ещё свои специфические цели, определяемые особенностями математической науки. Одна из них – это формирование и развитие математического мышления. Это способствует выявлению и более эффективному развитию математических способностей школьников, подготавливает их к творческой деятельности вообще и в математике с ее многочисленными приложениями в частности.
Вообще интеллектуальное развитие детей можно ускорить по трём направлениям: понятийный строй мышления, речевой интеллект и внутренний план действий.
Прочное усвоение знаний невозможно без целенаправленного развития мышления, которое является одной из основных задач современного школьного обучения.
Хочется обратить внимание на две главные проблемы дидактики математики: модернизация содержания школьного математического образования и совершенствование структуры курса.
Быстрый рост объема научной информации, ограниченность срока школьного обучения и невозможность сокращения объема изучаемых в школе основ науки с целью включения новой информации усложняют проведение реформ по модернизации школьного образования, а поэтому готовить их придется в течение более длительного времени, тщательно и строго на научной основе.
Имеют место успешные эксперименты по модернизации курса начальных классов и изучению в нем начал алгебры, что позволило дать значительную пропедевтику алгебры и геометрии в I-V классах, позволяющую изучить систематические курсы этих предметов в более быстром темпе и перенести ряд тем из старших классов в средние; включить в программу старших классов элементы высшей математики. Таким образом, улучшение системы курса возможно и в период между реформами, т.е. независимо от модернизации образования.
1.2 Методика преподавания математики как наука. Основные вопросы изучения
Слово «методика» в переводе с древнегреческого означает «способ познания», «путь исследования». Метод - это способ достижения какой-либо цели, решения конкретной учебной задачи.
Существуют разные точки зрения на содержание понятия «методика». Одни, признавая методику наукой педагогической, рассматривали ее как частную дидактику с общими для всех предметов принципами обучения. Другие считали методику специальной педагогической наукой, решающей все задачи обучения и развития личности через содержание предмета. Приведем несколько примеров определений.
Методика преподавания математики - наука о математике как учебном предмете и закономерностях процесса обучения математике учащихся различных возрастных групп и способностей.
Методика обучения математике – это педагогическая наука о задачах, содержании и методах обучения математике. Она изучает и исследует процесс обучения математике в целях повышения его эффективности и качества. Методика обучения математике рассматривает вопрос о том, как надо преподавать математику.
Методика преподавания математики - раздел педагогики, исследующий закономерности обучения математике на определенном уровне ее развития в соответствии с целями обучения подрастающего поколения, поставленными обществом. Методика обучения математике призвана исследовать проблемы математического образования, обучения математике и математического воспитания. Методика преподавания математики – педагогическая наука и, соответственно, учебная дисциплина, исследующая закономерности обучения математики вообще, закономерности обучения математике в школе в частности (5), наука о математике как учебном предмете и закономерностях процесса обучения математике учащихся различных возрастных групп на определенном уровне её развития в соответствии с целями обучения, поставленными обществом(14) .
Методика преподавания математики занимается, прежде всего, изучением, разработкой, усовершенствованием различных методов и форм преподавания математики в школах, а также многообразными организационными вопросами, возникающими при применении этих методов и форм на практике. Эта дисциплина выясняет, как обеспечить прочные систематизированные знания и навыки в объеме, установленном программой, тратя на это минимум времени и сил, и как обеспечить достижение тех воспитательных целей, какие ставит себе изучение математики. Методика преподавания математики изучает и систематизирует опыт лучших учителей и даёт возможность начинающему учителю избежать многих ошибок, легко допускаемых на первых порах и приводящих к большим потерям для учащихся. Исходя из конкретных задач, стоящих перед учителем математики, имеющим класс с определенным составом учащихся, определенную программу, определенные учебники, твердое расписание, методика устанавливает способы наилучшего использования всех этих конкретных условий для достижения поставленной цели. Кроме того, она накопляет также опыт учителей, говорящий о желательности тех или иных изменений в учебных планах, программах, учебниках.
Методика математики – наука, выводы которой немедленно и самым широким образом применяются на практике и являются базой искусства преподавания (13).
Методика преподавания математики прежде всего должна ответить на несколько основных, тесно связанных между собой вопросов.
Первый из них – зачем обучать математике? Очевидно, ответ на этот вопрос можно получить, исходя из общих задач воспитания, которые, в свою очередь, определяются задачами, стоящими перед обществом на соответствующем этапе его развития.
Второй вопрос – кого обучать математике? С одной стороны, это вопрос о возрасте: когда целесообразно приступать к обучению детей математике и когда следует заканчивать изучение обязательной для всех программы? С другой стороны это приобретающий все большую актуальность вопрос о «послешкольном» продолжении математического образования.
Третий вопрос – каково содержание изучаемого курса математики? Ответ на этот вопрос теснейшим образом связан с ответом на вопрос о целях обучения математике. Следует подчеркнуть, что, пожалуй, именно в математике вопрос о том, что именно и в каком объеме следует отобрать из сегодняшней науки для школьной программы, является наиболее сложным, важным и спорным.
Наконец, четвертый вопрос – как обучать математике? Очевидно, что ответ на этот вопрос и составляет важнейшую часть курса методики преподавания математики, причем материал этот является наиболее подвижным, наиболее конкретным, наиболее близким учителю-практику, требует к себе поистине творческого отношения.
Дидактика математики относится к группе педагогических наук и находится в тесной связи с педагогикой. Влияние на нее оказывают и математические науки. Также методика математики основывается на понятиях и законах психологии. Физиология высшей нервной деятельности, в частности учение И.П. Павлова об условных рефлексах, находит применение в обучении математике. Плодотворное влияние на дидактику математики оказывает связь логикой, историей математики, с ее историей.
Методика преподавания математики рассматривает такие вопросы, как цели обучения, математические понятия и предложения, теоремы и их доказательство, задачи и их решение, методы и формы обучения, урок по математике и др(6).
Методика преподавания математики в школе возникла с целью поиска педагогически целесообразных путей и способов изложения учебного материала. Методика преподавания математики начала разрабатываться чешским учёным Я.А. Коменским. Методика обучения математике впервые выделилась как самостоятельная дисциплина в книге швейцарского учёного И.Г. Песталоцци «Наглядное учение о числе» (1803, русский перевод 1806). Первым пособием по методике математики в России стала книга Ф.И. Буссе «Руководство к преподаванию арифметики для учителей» (1831). Создателем русской методики арифметики для народной школы считается П.С. Гурьев, который критерием правильности решения методических проблем признавал опыт и практику.
Цель методики обучения математике заключается в исследовании основных компонентов системы обучения математике в школе и связей между ними. Под основными компонентами понимаются: цели, содержание, методы, формы и средства обучения математике.
Предмет методики обучения математике отличается исключительной сложностью. Предметом методики обучения математике является обучение математике, состоящее из целей и содержания математического образования, методов, средств, форм обучения математике. На функционирование системы обучения математике оказывает влияние ряд факторов: общие цели образования, гуманизация и гуманитаризация образования, развитие математики как науки, прикладная и практическая направленность математики, новые образовательные идеи и технологии, результаты исследований в психологии, дидактике, логике и т.д. Совокупность этих факторов образует внешнюю среду, которая оказывает непосредственное влияние на систему обучения математике. Многие компоненты внешней среды воздействуют на нее через цели обучения математике.
Методика преподавания математики претерпевает в своем развитии большие трудности, прежде всего, из-за сложностей преодоления разрыва между школьной математикой и математической наукой, а также из-за того, что она является пограничным разделом педагогики на стыке философии, математики, логики, психологии, биологии, кибернетики и, кроме того, искусства(13).
Глава 2. Стадии становления методики преподавания математики в России
2.1 Основные периоды и этапы становления методики преподавания математики в России
Ряд исследователей, таких как Ю.М. Колягин, Т.С. Полякова, О.А. Саввина, О.В. Тарасова, Р.С. Черкасов, в своих работах предлагают разные подходы к периодизации развития математического образования. В научных работах И.К. Андронова и Р.С. Черкасова предприняты попытки определить не только периодизацию математического образования, но и периодизацию методики преподавания математики как науки.
Так, например, Ю.М. Колягин в своем исследовании описывает развитие математического образования на фоне эволюции всей отечественной образовательной системы, в большинстве случаев обращаясь к оценке событий с государственных позиций. Это подтверждается тем, что в приложении к книге содержатся биографические сведения о деятелях науки, просвещения и культуры России в двенадцати сводных таблицах, разбитых хронологическими рамками (2):
1. 1682 -1725 гг. (Петр I);
2. 1725 - 1740 гг. (Екатерина I, Петр II, Анна Иоановна);
3. 1741-1762 гг. (Елизавета Петровна, Петр III);
4. 1762 - 1801 гг. (Екатерина II, Павел I);
5. 1801 – 1825 гг. (Александр I);
6. 1825 -1855 гг. (Николай I);
7. 1855 – 1881 гг (Александр II);
8. 1881 – 1894 гг. (Александр III);
9. 1894 – 1918 гг. (Николай II);
10.1918 – 1930 гг. (Советский период);
11.1931 – 1965 гг. (Советский период);
12.1965 – 1999 гг. (Советский период).
В монографии Т.С. Поляковой приводится периодизация школьного математического образования, начиная со времени Киевской Руси (X-XI вв.) и до наших дней. Она отмечает следующие этапы развития математического образования (3):
1. Зарождение математического образования (со времени Киевской Руси (X – XI вв.) – XVII в.);
2. Становление отечественного математического образования (с указа Петра I об основании математико – навигацкой школы (1701 г.) до 1804 г.);
3. Создание российской модели классической системы школьного математического образования (образовательные реформы 1804 г. – вторая половина XIX в.);
4. Реформация классической системы школьного математического образования (60 – 70-е гг. XIX в. – 1917 г.);
5. Поиск новых моделей математического образования (1918 -1931 гг.);
6. Реставрация отечественных традиций, создание советской модели классического школьного математического образования (1931 – 1964 гг.);
7. Реформация советской модели классической системы школьного математического образования (1964 – 1982 гг.);
8. Период контрреформации (1982 – 1990 гг.);
9. Современный этап развития школьного математического образования (начался с 1991 – 1992 гг. и до настоящего времени).
В исследовании О.А. Саввиной определено восемь периодов становления и развития обучения высшей математике в отечественной средней школе (4):
1. Первый период (вторая треть XVIII в. – 1845 гг.) – характеризуется тем, что вопросы высшей математики включались в преподавание стихийно. Обучение высшей математике в школе не носило массового характера. На данном этапе были созданы первые учебники по высшей математике на русском языке, в них формировалась лексика и терминологический аппарат понятий аналитической геометрии и анализа бесконечно малых.
2. Второй период (1846 – 1906 гг.) – ознаменовался стабилизацией математического образования и появлением общегосударственных программ, но вместе с тем – отсутствием в программах гимназий элементов высшей математики. В этот же период ослабляются позиции аналитической геометрии в курсе кадетского корпуса (военной гимназии) и реальных училищ.
3. Третий период (1907 – 1917 гг.) – период «парадного марша» элементов высшей математики в среднюю школу. В 1907 г. элементы высшей математики вошли в программу реального училища, в 1911 г. основами анализа бесконечно малых пополнился курс кадетского корпуса, а с 1914 г. сведения из аналитической геометрии заняли почетное место в программе коммерческого училища. Эти изменения не коснулись лишь классической гимназии, все попытки реформирования содержания математического образования в ней, остались только в проектах. Следует отметить, что в это время был заложен прочный фундамент методики преподавания высшей математики в средней школе (труды А.Н. Остроградского, М.Г. Попупреженко, П.А., П.А. Самохвалова, Ф.В. Филипповича, Д.М. Синцова и др.).
4. Четвертый период (1918 – 1933 гг.) – характеризуется тем, что «по инерции» вопросы высшей математики, заложенные в дореволюционном курсе отдельных типов средних учебных заведений, включались в проекты программ для средней школы, но не нашли воплощения на практике.
5. Пятый период (1934 – 1964 гг.) – создание и функционирование советской модели классического школьного математического образования, игнорирующей элементы высшей математики на старшей ступени обучения.
6. Шестой период (1965 – 1976 гг.) - широкая апробация элементов математического анализа в школьном курсе (в т. ч. на факультативах и математических кружках), постепенное введение элементов дифференциального и интегрального исчисления в массовую среднюю школу, поиск наиболее рациональной конструкции модели (объема, содержания и порядка изложения).
7. Седьмой период (1977 – конец 80-х гг.) – стабилизация содержания сведений из высшей математики в школьном курсе, период массового включения начал дифференциального и интегрального исчисления в среднюю школу, введение стабильного учебника «Алгебра и начала анализа» (под ред. А.Н. Колмогорова). Несмотря на контрреформацию содержания математического образования начала 80-х гг., элементы математического анализа в школьном курсе были сохранены. В это время создана современная методика обучения математическому анализу в средней школе (Ю.М. Колягин, Г.Л. Луканкин, Н.А. Терешин и др.).
8. Восьмой период (начало 90-х гг. по настоящее время) – время поиска оптимального объема и конструкции начал математического анализа в средней школе в условиях фуркации старшей ступени школы на курсы А и В. В целом характеризуется ослаблением составляющей начал математического анализа.
В данном исследовании, предлагая именно такую модель распределения фактов истории математического образования по этапам, автор помимо закономерностей функционирования математического образования в разных социально-педагогических условиях, учитывал, в первую очередь, значение, которое придавалось высшей математике в этом процессе: изменение роли и места (ослабление или усиление) высшей математики в школьном обучении.
Таким образом, рассматриваемая периодизация, служит моделью для схематического описания генезиса обучения высшей математике в отечественной школе XVIII-XXI вв.
О.В. Тарасова выделяет два периода становления и развития геометрического образования: европейский период и русский период. Первый период (I – V этапы) относится к становлению и развитию обучения геометрии в европейской школе (VI – IV вв. до н.э. – конец XVII века). Второй период (VI – X этапы) соотносится со становлением и развитием обучения геометрии в отечественной средней школе (конец XVII века – революция 1917 года) (5).
Рассмотрим эти два периода по этапам.
Первый этап (VI – IV вв. до н.э.) – период преобразования практической геометрии в науку теоретическую и начало обучения геометрии. Геометрия из элитной науки, доступной немногим, довольно широко распространилась, постепенно стала предметом открытого обучения. Этому способствовали различные научные школы (Фалес Милетский, Пифагор, Гиппократ Хиосский и др.)
Второй этап (начало III в. до н.э. – до Рождества Христова) – период возникновения научного систематического курса геометрии, благодаря написанию Евклидом «Начал» - труда, по замыслу автора, предназначенного для закрытого обучения. Тем самым была создана прочная база для дальнейших теоретических исследований (Евклид, Архимед, Аполлоний Пергский и др.).
Третий этап (I в. – до конца XV в.) – период начала схоластического обучения геометрии (в монастырях, городских училищах, университетах и т. п.).
Четвертый этап (начало XVI в. – до конца XVI в.) – период начала критики евклидовского курса в качестве школьного учебника. Создание первых курсов, ориентированных на практические начала геометрии (геодезию, черчение, предметы окружающего мира) (П. Рамус).
Пятый этап (начало XVII в. – до конца XVII в.) – период определения принципов первичного обучения геометрии (наглядности, доступности) (Я.А. Коменский, В. Ратихий); формирования наглядно-прикладного направления в обучении геометрии (А. Арно). Период возникновения ярких противоречий между чувственным и абстрактным в процессе усвоения геометрических знаний. Этими годами датируются первые отечественные работы по геометрии, в связи с изложением вопросов землемерия.
Далее рассмотрим второй период (русский), который начинается с шестого этапа.
Шестой этап (начало XVIII в. – до середины XVIII в.) – период появления в России геометрии, как учебной дисциплины, с преобладанием ее практической составляющей; появления первых российских учебников (Г.В. Крафт, Л.Ф. Магницкий и др.); закладка фундамента отечественной методической науки под влиянием иностранных ученых и педагогов (В. Христиан, Л. Эйлер и др.).
Седьмой этап (вторая половина XVIII в.) – период начала массового обучения геометрии в России как самостоятельной учебной дисциплине. В это время постепенно определяется и содержание курса геометрии в различных учебных заведениях (кадетских и морских корпусах, академических гимназиях, общеобразовательных школах и т.п.). Начинается активное создание адаптированных для учащихся отечественных учебников геометрии (Д.С. Аничков, М.Е. Головин, Н.Г. Курганов, С. Назаров, С.Я. румовский и др.).
Восьмой этап (первая половина XIX века) – период зарождения наглядной геометрии как составной части школьного курса геометрии; создание отечественных и переводных «учебников для всех», предназначенных для сообщения начальных геометрических знаний на наглядной основе (Г. Литров, Г. Марешаль, Т.П. Татаринов и др.). В это время создаются первые отечественные систематические школьные курсы геометрии (С.Е. Гурьев, Т.Ф. Осиповский, Н.И. Фусс и др.); возникают различные методики геометрии применительно к определенному курсу (С.Е. Гурьев).
Девятый этап (вторая половина XIX века) – характеризуется становлением начального и систематического курсов геометрии. В это время появляется значительное число учебников, реализующих разнообразные подходы (написанных уже более педагогически осмысленно). Появляются учебники-долгожители (А.Ю. Давидов, А.П. Киселев). Методика геометрии, изначально применительно к определенному курсу (В.Я. Буняковский, Н.И. Лобачевский, М.В. Остроградский и др.) становится методикой геометрии как раздела педагогической науки (А.Н. Остроградский). Окончательно определяется структура и содержание систематического курса, интегрирующего в себе как практические, так и теоретические основы геометрии.
Десятый этап (начало XX в. – до революции 1917 г.) – завершение оформления курса элементарной геометрии как самостоятельного учебного предмета, изучаемого на различных этапах школьного обучения. Создаются комплекты учебников геометрии по начальному и систематическому курсам геометрии, обеспечивающие их преемственность (Г.Я. Юревич, В.Я. Гебель и др.); создаются отдельные учебно-методические комплекты по начальному курсу геометрии (А.Р. Кулишер); формируются целостные методические теории обучения геометрии (Н.А. Извольский, С.И. Шохор-Троцкий и др.).
Таким образом, по мнению автора (Тарасовой О.В.), «к концу рассматриваемого временного периода в отечественной средней школе сложился и оправдал себя на практике классический курс школьной геометрии, составными частями которого были курс начальной геометрии (младшее звено школы), систематический курс планиметрии (среднее звено школы) и систематический курс стереометрии (старшее звено школы). В этом курсе в органическом единстве выступали элементы теории и практики (помимо учебников существовали и задачники). К этому же времени были разработаны основы отечественной методики обучения геометрии» (5).
Что касается определения периодизации методики преподавания математики как науки, то И.К. Андронов в своей работе изучает зарождение, созревание, развитие, а также становление науки «педагогики математики» и выделяет всего четыре этапа (1):
1. Стадия зарождения предмета педагогики математики (конец XVII – нач. XIX вв.);
2. Этап созревания педагогики математики, связанной с рациональным обучением математике в школе (вторая половина XIX в.);
3. Этап развития педагогики и дидактики математики (первая половина XX в.);
4. Этап становления педагогики математики, как педагогической науки (вторая половина XX в. и до наших дней).
В программной статье Р.С. Черкасова приводится периодизация в которой рассматривается не только история отечественного математического образования, но и развитие методики преподавания математики (6):
1. Период создания первых светских школ (1700 – 1800 гг.);
2. Период становления светского школьного образования. Первые научные исследования в области методики преподавания математики (1800 – 1860 гг.);
3. Период развития массового среднего образования. Широкое обсуждение проблем методики преподавания математики (1860 – 1900 гг.);
4. Период всероссийских съездов преподавателей математики (1900 – 1917 гг.);
5. Период становления послереволюционной школы. Поиск новых путей математического образования (1918 - 1932 гг.);
6. Период совершенствования общеобразовательной трудовой политехнической школы (1932 – 1964 гг.);
7. Период реформы школьного математического образования и неожиданной ее приостановки (1965 – 1984 гг.);
8. Период поиска путей восстановления и развития идей реформы (1984 – 1990 гг.);
9. Период современных преобразований (1990-й и последующие годы).
Несмотря на большинство совпадений, стоит обратить внимание и на некоторые различия в приведенных периодизациях.
Например, у Т.С. Поляковой, так же как и у Р.С. Черкасова, выделено девять периодов. Однако, свою периодизацию Т.С. Полякова начинает с периода зарождения математического образования Киевской Руси, а Р.С. Черкасов с создания первых светских школ (1700-1800 гг.).
Следует заметить, что согласно периодизации, предложенной Т.С. Поляковой, XVIII век относится ко второму этапу и характеризуется как этап становления математического образования.
Можно указать еще одно отличие – Р.С. Черкасов в качестве самостоятельного этапа выделяет время проведения всероссийских съездов (1900 – 1917 гг.), которое у Т.С. Поляковой присоединено к четвертому периоду – реформации классической системы школьного математического образования (60 70-е гг. XIX в. – 1917 г.).
Каждый из авторов в основу построения периодизации кладет какой-либо принцип. Так, например у Т.С. Поляковой – это политика Министерства образования, его уставы, реформы; у О.А. Саввиной – значение, роль и место высшей математики в процессе обучения, у О.В. Тарасовой – становление и развитие геометрического образования; у Ю.М. Колягина – государственные и политические интересы.
Таким образом, в этих периодизациях, имеются как общие тенденции, так и разночтения. В целях более целостного представления о развитии математического образования в России, необходимо свести все к единообразию. То есть, необходимо разработать периодизацию всего содержания математического образования, чего, к сожалению, на настоящий момент не сделано ни в одном из научных исследований.
С целью наглядности приведем сводную таблицу всех рассмотренных авторских периодизаций.
2.2 Исторические вопросы методики преподавания математики в России
Математическое образование в России находилось в 9—13 веках на уровне наиболее культурных стран Восточной и Западной Европы. Затем оно было надолго задержано монгольским нашествием. В 15—16 веках в связи с укреплением Русского государства и экономическим ростом страны значительно выросли потребности общества в математических знаниях. В конце 16 века и особенно в 17 веке появились многочисленные рукописные руководства по арифметике, геометрии, в которых излагались довольно обширные сведения, необходимые для практической деятельности (торговли, налогового дела, артиллерийского дела, строительства и пр.).
В Древней Руси получила распространение сходная с греко-византийской система числовых знаков, основанная на славянском алфавите. Славянская нумерация в русской математической литературе встречается до начала 18 века, но уже с конца 16 века эту нумерацию всё более вытесняет принятая ныне десятичная позиционная система.
Наиболее древнее известное нам математическое произведение относится к 1136 и принадлежит новгородскому монаху Кирику. Оно посвящено арифметико-хронологическим расчётам, которые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий (определения на каждый год дня наступления праздника пасхи), сводящуюся в своей математической части к решению в целых числах неопределённых уравнений первой степени. Арифметические рукописи конца 16—17 веков содержат, помимо описания славянской и арабской нумерации, арифметические операции с целыми положительными числами, а также под