Экономико-математическое моделирование

1. Определить нижнюю и верхнюю цену игры, заданной платежной матрицей

Имеет ли игра седловую точку?

Решение:

Найдем по каждой строчке платежной матрицы минимальное число αi= min (αi1, αi2, αi3) – это гарантированный выигрыш игрока А, при выборе им соответствующей стратегии. Чтобы получить максимально возможный гарантированный выигрыш, игрок А должен выбрать ту стратегию, для которой αij имеет максимальное значение – α = max(α1, α2, α3) – это нижняя цена игры.

Для игрока В выберем по каждому столбцу максимальное число βj = max(α1j, α2j, α3j) – это гарантированный проигрыш игрока В при выборе им стратегии Вj. Найдем минимальное из этих чисел β = min (β 1, β 2, β 3) – это верхняя цена игры. Занесем полученные данные в таблицу 1.

Нижняя цена игры α = 8 равна верхней цене игры β = 8. Значит, игра имеет седловую точку. Для игрока А оптимальная стратегия – А1, для игрока В оптимальная стратегия – В1.

Ответ: α = β = 8, игра имеет седловую точку, оптимальные стратегии (А1, В1).

Таблица 1 – Определение цены игры платежной матрицы

В1

В2

В3

А1

899

α1 = min (8, 9, 9) = 8

А2

658

α2 = min (6, 5, 8) = 5

А3

345

α3 = min (3, 4, 5) = 3

 β1 = max(8, 6, 3)

β1= 8

β2 = max(9, 5, 4)

β2= 9

β3 = max(9, 8, 5)

β3= 9

α = max(8, 5, 3) = 8

β = min (8, 9, 9) = 8

Актуально: