Яблочков - слава и гордость русской электротехники
Русские изобретатели-электротехники - предшественники П.Н. Яблочкова
Годы учебы и деятельности Яблочкова в России
Жизнь за рубежом
Изобретения Яблочкова
Попытки великого русского электротехника применить свои изобретения на родине
Соперники дуговой свечи
Возвращение Яблочкова в Россию
Характер и значение творческой деятельности Яблочкова
Используемая литература
Я выбрал эту тему, потому что горжусь своей Родиной и ее великими учеными и изобретателями, потому что жизнь и деятельность русских изобретателей - это подвиг, достойный подражания.
Есть в науке и технике область, где ряд выдающихся успехов был достигнут благодаря творческой мысли и трудам русских ученых и инженеров. Эта область - электротехника.
Сейчас даже вообразить невозможно, что всего каких-то сто лет назад слова "электротехника" не существовало, даже в словарях 80-х годов вы его еще не найдете. Все было еще так неопределенно, зыбко, туманно, все абсолютно очевидное сегодня представлялось еще столь спорным, и, казалось, спорам этим не будет конца, а вот надо же, всего 100 лет прошло и…
Открытие электрической дуги, первое практическое решение задачи применения электрического тока для освещения, изобретение гальванопластики, идея и практика технического использования переменного тока, а также принципы его трансформации, создание схемы трехфазного тока, изобретение радиотелеграфа - все это русские изобретения и открытия, создавшие новую эпоху в развитии электротехники.
Различной была судьба этих открытий и изобретений. Многие из них сыграли в свое время ведущую роль в мировой науке и технике, другие же остались неизвестны за границей, а в самой России были временно забыты. Это произошло потому, что в царской России прошлого века правящие круги недооценивали достижений отечественных ученых и изобретателей, а преклонялись перед заграничной наукой и техникой.
Кто же подарил нам электрический свет? О, на этот вопрос нелегко ответить. Можно было бы написать увлекательный роман с десятками ярких героев, судьбы которых причудливо переплелись вокруг этой общей, всецело поглощающей идеи - электрический свет. И в строю этих героев возвышается фигура русского изобретателя Павла Николаевича Яблочкова. Возвышается не только благодаря росту - 198 сантиметров, - но и трудами, положившими начало электрическому освещению.
В своей работе я хочу рассказать о великом русском электротехнике Павле Николаевиче Яблочкове.
Я поставил целью побольше узнать: о русских изобретателях-электротехниках - предшественниках Яблочкова, о жизни и деятельности П.Н. Яблочкова, о его изобретениях и о значении творческой деятельности П.Н. Яблочкова.
П.Н. Яблочков был не только крупным просвещенным изобретателем, но и серьезным, вдумчивым физиком-исследователем, глубоко анализирующим все явления, с которыми ему приходилось иметь дело, и неизменно прибегавшим к тщательному эксперименту для разрешения возникающих у него сомнений. Велико значение вклада П.Н. Яблочкова в мировую науку и технику.
В своей работе я использовал книгу Я. Голованова "Этюды об ученых". Герои этой книги были великими, не знающими устали, строителями гигантского здания человеческого знания. Каждый из них всего себя без остатка отдал науке, отдал людям. Здесь я нашел много материала о П.Н. Яблочкове и о А.Н. Лодыгине. В книге Н.А. Капцова "Яблочков - слава и гордость русской электротехники" рассказывается о трудах электротехника Яблочкова.
О русском физике В.В. Петрове я узнал из книги Ю.А. Храмова "Физика". В "Большой советской энциклопедии" я нашел материал о электротехниках А.Н. Лодыгине и о В.Н. Чиколеве.
Русские изобретатели-электротехники - предшественники П.Н. Яблочкова
В 1802 году выдающийся русский физик В.В. Петров открыл явление электрической дуги, названное впоследствии вольтовой дугой. Электрическая дуга - дуга Петрова, как надо ее по праву называть, - представляет собой электрический разряд в воздухе между двумя сближенными между собой углями. Описывая открытую им дугу, В.В. Петров высказал мысль, что посредством этой дуги "темный покой довольно ясно освещен быть может". Но от гениальной мысли, родившейся в мозгу ученого, до ее осуществления, и в особенности до широкого применения в практике, путь оказался длинным. Попыток осуществить мысль Петрова, о применении электрической дуги для освещения, было сделано очень много. Были предприняты попытки осуществить освещение при помощи электрического тока, используя нагревание твердых тел проходящим через них током (лампы накаливания). Так, уже в 1838 году один ученый пытался применить электрический ток для накаливания угольных стержней. Были другие попытки применить электрический ток для освещения. Но все эти попытки долгое время не приводили к удовлетворительным практическим результатам. В первых лампах накаливания тело накала быстро сгорало или окислялось. Электрическая же дуга требовала постоянной регулировки расстояния между углями, так как при горении дуги угли укорачиваются, расстояние между ними увеличивается, условия, в которых происходит явление дуги, меняются, электрический разряд ослабевает и в конце концов, при большом расстоянии между углями, дуга гаснет.
Чтобы избежать погасания дуги, был предложен ряд приспособлений, так называемых регуляторов. В этих регуляторах при уменьшении силы тока специальный электромагнит передвигал один из углей и восстанавливал между ними нужное расстояние.
Регуляторы представляли собой довольно сложные приспособления. Они состояли из электромагнита, а также других деталей, например, из ряда зубчатых колес и пружин, напоминающих часовой механизм. Один из таких регуляторов изображен на рис.1 (см. приложение). Сложность механизма приводила к нечеткой работе регуляторов и к частой их поломке. Необходимо также иметь в виду, что режим электрической дуги постоянно изменялся не только вследствие изменения расстояния между концами углей, но также и при каждом колебании напряжении электрической цепи, питающей лампу. Поэтому регулировка была недостаточной, и применение электрической духи требовало постоянного вмешательства человека.
Кроме того, от каждого источника электрического тока можно было питать только одну дугу. При параллельном включении горела всегда только одна дуга. При последовательном соединении несколько дуговых горелок регулятор одной дуги мешал работе другой: в одних дугах угли смыкались, в других они расходились на большие расстояния - и вся цепь гасла.
Применять для питания каждой "электрической горелки" свою отдельную маленькую электрическую машину было не только сложно и не удобно, но и очень невыгодно. Маленькие машины были очень не экономны по сравнению с большими. Стоимость их также была много выше, чем стоимость одной большой машины. Все это удорожало как установку, так и эксплуатацию электрического освещения при помощи электрической дуги. Поэтому целых 70 лет после открытия Петрова электрическое освещение все еще представляло собой дорогую эффектную забаву и применялось только в парадных случаях, наравне с фейерверком. В старых книгах можно найти описания иллюминации в Москве в 1856 году. Можно найти описание "электрических солнц", используемых для световых эффектов в театрах. Электрическое освещение при помощи дуги находило более широкое применение лишь там, где большие расходы на источники электрической энергии и необходимость постоянного ухода и наблюдения за горелками и регуляторами искупались эффектом, достигаемым при ярком освещении больших пространств в ночное время для производства каких-либо важных строительных работ.
Чтобы сделать возможным широкое использование электрического тока для освещения, электрики того времени должны были найти способ сохранения постоянного расстояния между углями дуги. И добиться, как тогда выражались, "дробления электрического света" от одной большой электрической машины; или же, применяя для освещения метод накаливания твёрдых тел, добиться, чтобы "тело накала" не сгорало и не разрушалось слишком быстро.
Лишь в 70-х годах XIX столетия три русских изобретателя - Павел Николаевич Яблочков, Александр Николаевич Лодыгин и Владимир Николаевич Чиколев - почти в одно и то же время, но каждый по-своему, решили эти задачи. Они сделали электрическое освещение практически применимым, и среди них Яблочков довёл свою "свечу" и свою систему освещения до широкого применения во всей Европе.
Работы этих трёх выдающихся русских электротехников тесно переплетались между собой. Поэтому, говоря о Яблочкове, нельзя не упомянуть о работах Лодыгина и Чиколева.
А.Н. Лодыгин в своих работах исходил из представления, что в электрической дуге, горящей между двумя угольными электродами, светятся, главным образом, раскалённые током концы углей, а свечение воздуха в дуге сравнительно очень мало. Кроме того, согласно воззрениям того времени, он полагал, что на поддержание электрического тока через дугу требуется дополнительная затрата энергии (на преодоление "поляризации" дуги, как тогда выражались). Поэтому Лодыгин пришёл к мысли отказаться от использования электрической дуги для освещения, а просто сомкнуть оба угольных стержня и пропускать через них ток. Для того чтобы избежать сгорания угля в кислороде воздуха, Лодыгин первоначально считал достаточным поместить более или менее толстый угольный стерженёк в плотно укупоренную стеклянную колбу, как это показано на рис.2 (см. приложение). Он полагал, что часть стерженька будет затрачена на соединение с кислородом воздуха внутри колбы, а затем горение и разрушение угольного штабика прекратится, и лампой можно будет пользоваться в течение достаточно продолжительного времени. Осуществив эту идею, Лодыгин первый в мире вынес лампу накаливания из тиши научных кабинетов и лабораторий на улицу и на опыте показал возможность уличного освещения "электрическим светом". В один из тёмных осенних вечеров 1872 года жители Петербурга имели возможность любоваться ярким светом двух электрических фонарей на одной из обычно погружённых в мрак улиц в районе Песков. Этот день справедливо считается датой рождения лампы накаливания.
Демонстрация Лодыгиным электрического освещения имела большой успех и была повторена им в Галерной гавани и других местах Петербурга.
Лодыгин приобрёл патент на свою лампу не только в России, но и в Америке. Впоследствии, основываясь на работах Лодыгина, американский суд решил спор между изобретателем Эдисоном и его конкурентом Сваном тем, что аннулировал патенты обоих.
Известно, что расчёты Лодыгина на то, что кислород воздуха не будет проникать снаружи в колбу его первых ламп, и уголёк не будет разрушаться, не оправдались. Тогда Лодыгин построил другой, более совершенный, но и более сложный тип лампы, с масляной укупоркой колбы и большим медным цилиндром внутри неё для уменьшения объёма воздуха. Но построить лампу с угольным телом накала, способную гореть в течение промежутка времени, достаточного для практического её использования, Лодыгину удалось только через несколько лет. В этой лампе, показанной на рис.3 (см. приложение), воздух из колбы был удален воздушным насосом, простые угольные палочки были впервые заменены стерженьками, специально изготовленными путем прокаливания палочек из твердых пород дерева, обсыпанных угольным порошком и прокаленных в тигле без доступа воздуха. Подобного рода лампами было осуществлено пробное освещение одного из больших петербургских магазинов. Эти лампы Лодыгина были также использованы во время подводных работ при постройке Литейного моста через Неву.
Достигнутые успехи позволяли приступить к выпуску ламп накаливания. Но деньги, собранные учрежденным Лодыгиным паевым товариществом, давно уже были израсходованы. Поэтому ему не только не удалось реализовать свое ценное изобретение на практике, но и пришлось для добывания средств поступить слесарем-инструментальщиком в петербургский Арсенал.
Благодаря энергии, настойчивости и недюжинным способностям Лодыгину все же удалось пробиться на более широкую дорогу инженера. До 1884 года он работал инженером в Петербурге, а затем поступил на завод, изготовляющий лампы накаливания в Париже. В тоже время он не оставил своих собственных работ по усовершенствованию лампы накаливания и вскоре одержал крупную победу над Эдисоном. В 1890 году Лодыгин заявил в Америке патент на лампы накаливания, в которых он предложил заменить угольную нить нитью из тугоплавких металлов: вольфрама, молибдена или тантала. Лодыгин указал способ изготовления таких нитей путем электролитического осаждения названных выше металлов на очень тонкой нити из другого, более мягкого металла, полученной обычным методом (путем протягивания). В 1900 году лампы Лодыгина с молибденовыми нитями были выставлены на всемирной Парижской выставке и имели там большой успех. В 1906 году самой крупной американской фирме по изготовлению ламп накаливания пришлось купить патент Лодыгина для того, чтобы иметь право приступить к изготовлению современных нам ламп накаливания с металлическими нитями. Таким образом, Лодыгин не только на несколько лет раньше зарубежных изобретателей построил образцы вполне годных ламп накаливания с угольной нитью, но ему неоспоримо принадлежит также и приоритет изобретения более современных ламп с металлическими нитями. Эти лампы уже более тридцати лет тому назад вытеснили лампы с угольной нитью.
Дальнейшая деятельность А.Н. Лодыгина в качестве инженера-изобретателя имело место в области металлургии и других отраслей технике, и протекала в Америке. После успеха ламп с металлической нитью Лодыгин вернулся в Россию. Он рассчитывал применить свой большой технический и жизненный опыт на родине для развития в ней передовой техники. Но правящие круги царской России шли на поводу у иностранцев и действовали по их указке. Они вовсе не собирались развивать передовую технику в собственной стране.
Лодыгину вновь пришлось уехать за границу.
Годы учебы и деятельности Яблочкова в РоссииПавел Николаевич Яблочков родился 26 сентября 1847 года в семье саратовского помещика. Склонность к физическим опытам и к использованию экспериментального материала этой области науки для изобретения полезных приборов пробудилась у П.Н. Яблочкова с ранних лет. Он построил механический прибор, приходивший в движение при вращении колес повозки и позволяющий отсчитывать пройденный этой повозкой путь.
Родители направили Яблочкова для обучения сперва в Саратовскую гимназию, а через некоторое время "он проявил большие способности и успехи в математических науках" - в Николаевское инженерное училище в Петербурге. Они мечтали для него о блестящей военной карьере.
Благодаря хорошему подбору преподавателей инженерное училище дало Яблочкову более широкое и углубленное техническое образование, чем могла дать классическая гимназия тех времен. В училище основательно изучались математика, физика и химия. Хорошо было поставлено обучение иностранным языкам.
В 1866 году П.Н. Яблочков окончил Николаевское училище и был назначен младшим офицером в 5-й саперный батальон в Киевскую крепость. Но его не прельщала военная карьера. При первой же возможности, через год после окончания училища, он по болезни уволился со строевой военной службы. Желая пополнить свои знания по электротехнике, которая очень его интересовала, он воспользовался правами, которое давало ему военное звание, для того чтобы поступить в офицерские Гальванические классы в Петербурге. Преподавание в этих классах стояло на большой высоте. Яблочков познакомился там с новейшими достижениями в области изучения и технического применения электрического тока и серьезно дополнил свою теоретическую и практическую подготовку. Каждый офицер, окончивший Гальванические классы, обязан был прослужить после этого в инженерных войсках в течение года без права на преждевременное увольнение или продолжительный отпуск. Поэтому Яблочков был вновь зачислен в 5-й саперный батальон.
Отбыв обязательный срок военной службы, Яблочков в 1870 году окончательно уволился в запас. Ему было предложено место начальника телеграфа тогда еще строившейся Московско-Курской железной дороги. Он с радостью принял эту должность, так как она давала ему возможность использовать мастерскую телеграфа для осуществления задуманных им опытов и проверки своих изобретательских идей. В то время в России еще не существовало других электротехнических мастерских или лабораторий.
К этому периоду жизни П.Н. Яблочкова относятся его первые встречи с выдающимся русским электриком В.Н. Чиколевым. Так же как и Яблочков, Чиколев обладал крупным изобретательским талантом, но имел более углубленную научную подготовку. Он окончил физико-математический факультет Московского университета и первоначально предназначал себя к научно-преподавательской деятельности и уже готовился к экзамену на ученую степень магистра. Но вскоре, увлекшись электротехникой, Чиколев отказался от ученой карьеры, покинул место ассистента при кафедре физики в Петровской сельскохозяйственной академии и всецело посвятил себя практической и популяризаторской деятельности.
Громадной заслугой Чиколева являются не столько его многочисленные изобретения, сколько его большая работа как электротехника-теоретика и его огромная и разносторонняя популяризаторская деятельность. Чикалев в 1872 году был одним из наиболее деятельных инициаторов и организаторов электротехнического отдела Политехнического музея в Москве. Этот музей был уже в то время одним из важнейших рассадников технических знаний в России.
В 1880 году группа русских электротехников от имени Русского технического общества начала издавать первый в России электротехнический журнал - "Электричество". Душой и первым редактором этого журнала был В.Н. Чиколев.
Все написанные им статьи и книги были пронизаны уверенностью в возможности всестороннего применения электричества в быту и технике.
С особенно большим энтузиазмом В.Н. Чиколев проповедовал идею о применении электричества для получения света. Он неоднократно предсказывал скорую победу и быстрое распространение электрического света. Так, на одной из своих публичных лекций в Политехническом музее в Москве он сказал: "Конечно, не детям нашим, а нам самим придется быть свидетелями широкого распространения электрического освещения". Не прошло и четырех лет, как эти слова были блестяще оправданы успехами, достигнутыми П.Н. Яблочковым. Но в 1875 году, когда эти слова были произнесены, они казались фантазией. "Как теперь помню, - писал позднее (в 1895 году) в одной из своих статей Чиколев, - какие возражения, какие нападки за публичное сообщение моих личных увлечений вызвала моя фраза". Статью "История электрического освещения", написанную в 1880 году, Чиколев заканчивает словами: "Несколько лет тому назад я заслужил упрек в увлечении, когда в одном публичном чтении в Москве выразил уверенность, что в самом близком будущем прекрасный электрический свет перестанет быть блестящей игрушкой и завоюет себе серьезное положение в нашей жизни. Теперь я позволю себе предсказать весьма недалекое осуществление канализации электричества. Мы сами, а не дети наши должны быть свидетелями этого события, которое будет иметь неисчислимые, беспредельные последствия". Эти слова Чиколева имели в виду прокладку сетей электрического тока - электрификацию страны.
Благодаря такому энтузиазму и широкой здоровой творческой фантазии Чиколева встреча с ним оказала решающее влияние на направление всей изобретательской деятельности Яблочкова.
Яблочков познакомился с Чиколевым на одной из бесед по вопросам электротехники, которые Чиколев проводил в Политехническом музее. Особенно сильное впечатление произвели на Яблочкова попытки Чиколева изобрести конструкцию надежного регулятора электрической дуги, основанного на новом, предложенном Чиколевым, "дифференциальном" принципе. Идея этого принципа заключалась в том, что расстояние между углями определялось действием не одного, а двух электромагнитов. Через обмотку одного из них проходил ток дуги, через обмотку другого - ток, ответвленный от основной цепи, параллельно дуге. Таким образом, первый электромагнит отзывался на изменение расстояния между концами углей, а второй - на колебание напряжения сети, питающей дугу. Чиколев предложил несколько типов дифференциального регулятора, каждый из которых был все более и более совершенным. В окончательном виде дифференциальный регулятор был разработан и построен им в 1879 году.
Работы Чиколева над дифференциальным регулятором побудили Яблочкова сконцентрировать все свое внимание на том цикле работ, который привел его к изобретению "свечи". Яблочков изготовил для сильно нуждавшегося тогда в экспериментальной базе Чиколева по его чертежу один экземпляр дифференциального регулятора, и сам стал усиленно думать над возможностью применения электрической дуги для освещения. Увлеченный этими мыслями, Яблочков проделал в 1874 году в несколько необычных условиях опыт применения электрической дуги с несовершенным регулятором старого типа в железнодорожном деле. Опыт удался. Но Яблочков, неотрывно продежуривший ночь или две при поставленном на передней площадке паровоза электрическом фонаре и все время корректировавший от руки действие "автоматического" регулятора, лишний раз убедился в невозможности широкого применения такого способа электрического освещения.
В том же 1874 году, чтобы иметь больше времени для своей исследовательской и изобретательской деятельности, Яблочков решился на смелый шаг: оставил казенную службу и открыл в Москве на небольшие личные средства мастерскую физических приборов. Его надежды на успех предприятия не оправдались. Он разорился. Но несмотря на настроения родных и на свою неудачу, Яблочков не вернулся к проторенной служебной дорожке, а остался верен идеям ученого и изобретателя. Тогда родственники отказали ему в, какой бы то ни было, материальной поддержке.
Убедившись, что в царской России ему ничего не удастся сделать, Яблочков решил уехать за границу и попытаться там приложить свои силы на любимом поприще.
Жизнь за рубежомПо пути в Америку Яблочков очутился в Париже. Он приложил все старания к тому, чтобы извлечь из пребывания в этом городе возможно больше пользы для осуществления своих замыслов. В числе парижских предприятий, с которыми он знакомился, была мастерская часов и точных приборов фирмы Бреге. Эта фирма в течение первой половины XIX века пользовалась широкой известностью. Слово Бреге, или Брегет, стало нарицательным и обозначало хорошие карманные часы этой фирмы, снабженные боем.
В разговоре с Яблочковым владелец и руководитель мастерской Бреге понял, с каким незаурядным человеком он имеет дело, и предложил Яблочкову поступить в мастерскую фирмы в качестве своего помощника. Бреге обещал предоставить Яблочкову полную возможность проделывать опыты по практическому осуществлению электрического освещения и других изобретений и требовал от него взамен только работы по усовершенствованию динамо-машины. Яблочков согласился. Он нашел у Бреге те благоприятные условия, которых так долго и тщетно искал у себя на родине.
Последующие три года были порой наибольшего расцвета изобретательской и исследовательской деятельности Яблочкова. Не прошло и года, как он решил задачу сохранения расстояния между углями электрической дуги, создав осветительный прибор, названный его именем, - "свечу Яблочкова".
Людская молва приписывала изобретение "свечи Яблочкова" счастливому случаю. Говорили, будто бы изобретатель, сидя за столиком парижского кафе и приводя в порядок заметки, набросанные им в течение трудового дня, случайно положил рядом два карандаша, и что при виде этих двух карандашей у него возникла мысль о параллельном расположении двух углей в дуге. Но, конечно, это было не так. Изобретение "свечи" явилось следствием многолетней и упорной работы.
Вот как сам Яблочков рассказывает об изобретении докладе, сделанном им в 1879 году в Петербурге в Русском техническом обществе:
Первые опыты с электрическим освещением производил я еще здесь, в России, в 1872 - 1873 гг. Я работал тогда с обыкновенными регуляторами разных систем, затем несколько времени с вышедшей тогда лодыгинской горелкой системы накаливания. Около этого времени мне пришла мысль, имеющая связь с моими последующими работами.
Я делал тогда следующие опыты: брал очень тонкие угольки, помещал их между двумя проводниками, а для того, чтобы уголь не сгорал, я обматывал его волокнами горного льна. Идея была та, чтобы уголь, накаливаясь, сам не сгорал, а накаливал окружающую его глину или горный лен.
Из опытов этих ничего не вышло, и притом производил я их с большим перерывом и даже, наконец, совсем бросил, сохранив у себя мысль о применении глин и других земель к электрическому освещению. Я снова принялся работать только в 1875 году в Париже и стал употреблять тоже глину и всякие другие пригодные изолирующие вещества, помещая их в вольтову дугу, чтобы поддерживать расстояние между углями. Делая опыты здесь, в России, я употреблял небольшое количество элементов и обширных наблюдений поэтому производить не мог. Работая же в Париже, у Брегета, мне пришлось иметь дело с большими электрическими машинами. Здесь я исследовал свойства этих глин.
Находясь в вольтовой дуге при довольно сильном токе, они плавились и затем испарялись, так что трудно было поддерживать горение".
"Затем, - говорил Яблочков, - я придумал приспособление, которое известно ныне под именем моей свечи, т.е. помещал между углями изолировку, которая испаряется одновременно со сгоранием угля".
Изобретения ЯблочковаНа рис.4 показана "свеча Яблочкова", а также электрический фонарь, как он впервые был осуществлен Яблочковым. При работе на переменном токе оба угля сгорают с одной и той же скоростью, изолирующая масса между ними испаряется и, таким образом, сохраняются постоянное расстояние между концами углей и постоянная длина электрической дуги, независимо от колебаний питающего дугу напряжения. На рис.5 и 6 показано предложенное Яблочковым приспособление для помещения в фонаре четырех свечей, зажимаемых одна за другой при помощи коммутатора по мере сгорания каждой из них.
Результатом опытов Яблочкова явилась не только разработка свечи. Он обнаружил, что сопротивление многих тугоплавких тел электрическому току, как то: каолина, магнезии и т.д., уменьшается при нагревании, вопреки широко распространенному тогда мнению, будто сопротивление всех твердых тел увеличивается с повышением температуры, как это имеет место в металлах. Сила электрического тока, проходящего через каолиновую пластинку и разогревающего ее, растет, и раскаленная пластинка начинает ярко светиться. Обнаружив это явление, Яблочков использовал его для изготовления лампы накаливания, не требовавшей удаления воздуха. Телом накала в этой лампе служила каолиновая пластинка, вырезанная в форме той или иной фигуры или буквы, как это показано на рис.7 (см. приложение).
Идея ламп накаливания, предложенная Яблочковым, та же, что и в запатентованной 20 лет спустя и имевшей крупнейший успех лампы физика-химика В. Нернста.
Яблочков считал, что лампы накаливания вообще очень невыгодны. Он совершенно не верил в возможность их успешного применения в широком масштабе и поэтому не использовал этого своего открытия в полной мере.
Зажигание электрической дуги в "свече Яблочкова" первоначально достигалось помещением между концами основных углей специальных уголёчков, служивших запалом. Вскоре Яблочков стал применять в качестве запала полоску из какого-либо металла, наносимого на верхнюю грань изолирующего угли тела.
Яблочков стал также примешивать к изолирующей массе, помещенной между углями, порошки металла, например цинка. При сгорании угля изолирующая масса испарялась, а находившийся в ней металл выделялся на её поверхности в виде полоски. Это позволяло, возобновляя подачу тока, повторно зажигать свечу. Прибавление различных металлов отзывалось также на яркости пламени дуги и позволяло придавать цвету этого пламени тот или иной приятный для общего освещения оттенок.
"Свечи Яблочкова" хватало на полтора часа горения. В каждом фонаре на так называемом "подсвечнике" укреплялось по нескольку свечей. Из них горела всегда только одна, именно та, для которой условия горения были наиболее благоприятны. Эти наиболее благоприятные условия заключались в том, что горела та свеча, омическое сопротивление которой было наименьшим. Когда она погасала, загоралась следующая и т.д.
При работе на постоянном токе температура раскаленного конца того из двух углей электрической дуги, который соединен с положительным полюсом источника тока, много выше, чем температура раскалённого конца второго угля, соединенного с отрицательным полюсом источника тока. Для того чтобы при этих условиях оба угля укорачивались одинаково быстро, обеспечивая этим постоянную длину дуги, Яблочкову пришлось делать диаметр положительного угля примерно в два раза больше, чем отрицательного. неудобство, вызываемое необходимостью точного подбора диаметров углей, Яблочков обошел тем, что предложил пользоваться для питания дуги переменным током вместо общепринятого тогда постоянного тока. При работе на переменном токе концы обоих углей имеют одну и ту же температуру и сгорают с одной и той же скоростью.
Для электрического освещения по методу Яблочкова стали строить динамо-машины переменного тока.
Таким образом, изобретение "свечи Яблочкова" впервые привело к применению в электротехнике переменного тока. Этот ток, кроме электрического освещения, имеет, как скоро оказалось, большие преимущества перед постоянным током и в других областях электротехники.
Задачу дробления электрического света Яблочков решил несколькими различными способами. В противоположность фонаря с регуляторами, 4 - 5 "свечей Яблочкова" можно было включать последовательно в одну электрическую цепь. Кроме того, он предложил включать в основную электрическую цепь машины последовательно первичные обмотки нескольких индукторных катушек, а цепи с последовательно включенными свечами питать токами, наведенными во вторичных обмотках тех же катушек, как это показано на рис.9.
При пользовании машинами постоянного тока необходимо было включать в первичную цепь прерыватель. При переходе на переменный ток дело опять сильно упростилось, так как прерыватели были уже не нужны, и вся схема работала на принципе трансформатора. Таким образом, П.Н. Яблочков впервые применил этот принцип для практических целей. Несколькими годами позже лаборант физического кабинета Московского университета И.Ф. Усагин построил для осуществления идеи Яблочкова вместо индукторных катушек специальные приборы, явившиеся уже настоящими трансформаторами. Третий предложенный Яблочковым способ дробления света заключается в применении для этой цели конденсаторов.
По схеме, изображенной на рис.10, одна из обкладок каждого конденсатора присоединялась к общему проводу, соединенному с одним из плюсов динамо-машины переменного тока. Другая обкладка того же конденсатора заземлялась через одну или несколько последовательно включенных "свечей Яблочкова". Второй полюс динамо-машины также был заземлен непосредственно или через конденсаторы и свечи, как показано на рисунке.
Тотчас же после изобретения и лабораторного испробования "свечи"Яблочков придал всей горелке техническое оформление, допускавшее ее применение на практике. В 1876 году он выезжал в Лондон на выставку точных и физических приборов. "Свеча Яблочкова" имела большой успех на этой выставке.
После возвращения из Лондона он познакомился с одним предприимчивым французом, владельцем мастерских, изготовлявших водолазные приборы. Тот предоставил в распоряжение Яблочкова свои мастерские для серийного производства свечей и необходимой аппаратуры. В то же время было учреждено достаточно мощное акционерное "Общество изучения электрического освещения по методам Яблочкова". Были организованы испытания по освещению некоторых первоклассных парижских магазинов и больших улиц при помощи "свечей Яблочкова". Эти испытания расширялись со все большим и большим успехом. Началось широкое распространение нового электрического освещения не только в Париже, но и в других крупных европейских центрах - Лондоне, Петербурге, Мадриде, Неаполе, Берлине. Это было поистине триумфальное шествие "свечи Яблочкова" по Европе. На востоке она распространилась, по выражению современников, "до дворцов шаха персидского и короля Камбоджи".
Парижане, привыкшие к тусклому свету керосиновых и газовых горелок и стеариновых свечей, были поражены блеском и яркостью нового освещения и всюду восторгались "русским светом", как они его называли.
Современники Яблочкова красочно описывают, как каждый вечер в начале сумерек на площади Оперы собиралась большая толпа народа. Все глаза были устремлены на два ряда белых матовых шаров, подвешенных на высоких столбах по обе стороны проспекта Оперы. Внезапно эти гирлянды шаров загорались приятным светом. Публика, собиравшаяся там, сравнивала их с нитью жемчуга на фоне черного бархата.
В современных Яблочкову журналах мы находим изображения помещений, ипподрома, улиц, гавани, гостиниц, ярко озаренных "русским светом".
Это название было выгравировано по желанию Яблочкова на оправе всех его фонарей. На парижской выставке 1878 года "свечи Яблочкова" имели громадный успех.
Попытки великого русского электротехника применить свои изобретения на родинеТотчас же после технического оформления своего изобретения Яблочков приехал в Петербург и предпринял шаги для применения своего изобретения на родине, но в России того времени царили косность и рутина. Официальные и финансовые круги царской России не интересовались достижениями русских изобретателей, не верили в них. Им требовался заграничный штамп: так велико было преклонение перед Западом и недооценка сил и творческих возможностей русских людей. Яблочкову пришлось вернуться в Париж и здесь заняться пропагандой и распространением свечи. В России дело сдвинулось с мертвой точки только тогда, когда "свеча Яблочкова" получила широкое распространение, и сам он стал европейской знаменитостью.
После упущенных двух лет в Петербурге было создано акционерное общество "Яблочков-изобретатель и компания".
Учреждение петербургского товарищества, которого так жаждал Яблочков, оказалось связанным для него с тяжелой материальной жертвой. После неудачи первой попытки организовать товарищество в России он передал все права на свою русскую привилегию (на русский патент) Парижской акционерной компании. Чтобы иметь право открыть мастерскую свечей в Петербурге, изобретателю пришлось в 1878 году обратно выкупить патент, за который главари парижской компании потребовали около миллиона франков. Страстно желая организовать электрическое освещение в России, изобретатель согласился на эту чрезмерно высокую цену.
Не имея других денежных средств, он отдал в обмен на русский патент значительную долю принадлежавших ему акций парижского товарищества, которые в то время имели высокую цену и приносили большой доход. Этот благородный, патриотический поступок Яблочкова свел для него почти на нет возможность влиять на дальнейшую работу парижской компании и вскоре тяжело отразился на материальном положении Яблочкова.
Яблочков активно участвовал в создании петербургского товарищества и в организации мастерских для изготовления свечей и других деталей, необходимых для электрического освещения по его способу. В налаживание производственной работы Яблочков вложил много сил и труда. В короткий срок ему удалось достигнуть значительных усп