Корреляционный и регрессионный анализ

Содержание

1.   Исходные данные. 2

2.   Решение задачи 1. 3

3. Решение задачи 2. 7

Вывод: 11

Список использованных источников. 12


1. Исходные данные

Задание 1

1. Построить линейное уравнение парной регрессии;

2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации;

3. Оценить статистическую зависимость параметров регрессии и корреляции (с помощью F-критерия Фишера и Т-статистики Стьюдента).

Задание 2

1. Построить уравнение парной регрессии в виде нелинейной функции: степенной у = ахb, экспоненты у = аеbх, показательной у = abx, любой на выбор;

2. Для оценки параметров модель линеаризируется путем логарифмирования или потенцирования;

3. Определяется коэффициент эластичности и индекс корреляции;

4. Значимость определяется по критерию Фишера.

Исходные данные для решения задач приведены в таблице 1.

Таблица 1 - Исходные данные

NXY
123110
245125
334111
451121
528109
662127
771143
863121
970154
1045108
1151136
1227109
1362125
1457110
1563120
1669134
1774131
1835105
192174
2060120
Актуально: