История иследования полупроводников

Введение

Физика полупроводников имеет большое значение в современном мире. Исследования проводимости различных математиков начали проводиться в XIX веке. Изучение свойств полупроводников началось, когда возникла потребность в новых источниках энергии. На основе полупроводников были созданы новые приборы: термоэлектрогенераторы, сегнетоэлектрические и фотоэлектрические приборы. Полупроводники имеют большую область применения. Помимо радиотехники на основе полупроводников разработаны фотоэлементы, фотодиоды, интегральные схемы. Это все привело к появлению новых ЭВМ и ПК.

Видно, что на протяжении XIX–XX веков, физика полупроводников развивается, полупроводники внедряются в развитие радиотехники и другие отрасли. Эта тема актуальна на протяжении двух столетий. В настоящее время эта тема продолжает изучаться. Сейчас же решаются проблемы физики полупроводников, такие как: гетероструктуры в полупроводниках, квантовые ямы и точки, зарядовые и спиновые волны, мезоскопия, квантовые явления в полупроводниковых системах, нанотрубки.

Эти проблемы обсуждались 19 июня 2002 года в ГАИШ на международной конференции «Темная материя, темная энергия и гравитационная линзирование» В.Л. Гинзбургом.

Целью моего реферата является – изучить исследования полупроводников на протяжении с XIX до настоящего времени.

Задачи:

1. Показать вклад выдающихся деятелей в изучение свойств полупроводников и раскрыть основное положения их работ.

2. Раскрыть основные проблемы физики полупроводников в настоящее время.

3. Показать область применения полупроводников и их развитие


1. Понятие о полупроводниках

Полупроводники как особый класс веществ, были известны еще с конца XIX века, только развитие теории твердого тела позволила понять их особенность задолго до этого были обнаружены:

1. эффект выпрямления тока на контакте металл-полупроводник

2. фотопроводимость

Свойства полупроводников

Полупроводники – широкий класс веществ, характеризующийся значениями удельной электропроводности d, лежащей в диапазоне между удельной электропроводностью металлов и хороших диэлектриков, то есть эти вещества не могут быть отнесены как к диэлектрикам (так как не являются хорошими изоляторами), так и к металлам (не являются хорошими проводниками электрического тока). К полупроводникам, например, относят такие вещества как германий, кремний, селен, теллур, а также некоторые оксиды, сульфиды и сплавы металлов.

Полупроводники долгое время не привлекали особого внимания ученых и инженеров. Одним из первых начал систематические исследования физических свойств полупроводников выдающийся советский физик Абрам Федорович Иоффе. Он выяснил что полупроводники – особый класс кристаллов со многими замечательными свойствами:

1) С повышением температуры удельное сопротивление полупроводников уменьшается, в отличие от металлов, у которых удельное сопротивление с повышением температуры увеличивается. Причем как правило в широком интервале температур возрастание это происходит экспоненционально.

Удельное сопротивление полупроводниковых кристаллов может также уменьшатся при воздействии света или сильных электронных полей.

2) Свойство односторонней проводимости контакта двух полупроводников. Именно это свойство используется при создании разнообразных полупроводниковых приборов: диодов, транзисторов, тиристоров и др.

3) Контакты различных полупроводников в определенных условиях при освещении или нагревании являются источниками фото – э. д. с. или, соответственно, термо – э. д. с.

Строение полупроводников и принцип их действия.

Как было уже сказано, полупроводники представляют собой особый класс кристаллов. Валентные электроны образуют правильные ковалентные связи, схематически представленные на рис. 1. Такой идеальный полупроводник совершенно не проводит электрического тока (при отсутствии освещения и радиационного облучения).

Так же как и в непроводниках электроны в полупроводниках связаны с атомами, однако данная связь очень непрочная. При повышении температуры

(T>0 K), освещении или облучении электронные связи могут разрываться, что приведет к отрыву электрона от атома (рис. 2). Такой электрон является носителем тока. Чем выше температура полупроводника, тем выше концентрация электронов проводимости, следовательно, тем меньше удельное сопротивление. Таким образом, уменьшение сопротивления полупроводников при нагревании обусловлено увеличением концентрации носителей тока в нем.

В отличии от проводников носителями тока в полупроводниковых веществах могут быть не только электроны, но и «дырки». При потере электрона одним из атомов полупроводника на его орбите остается пустое место – «дырка» при воздействии электрическим поле на кристалл «дырка» как положительный заряд перемещается в сторону вектора E, что фактически происходит благодаря разрыву одних связей и восстановление других. «Дырку» условно можно считать частицей, несущей положительный заряд.

Примесная проводимость.

Один и тот же полупроводник обладает либо электронной, либо дырочной проводимостью – это зависит от химического состава введенных примесей. Примеси оказывают сильное воздействие на электропроводимость полупроводников.

Так, например, тысячные доли процентов примесей могут в сотни тысяч раз уменьшить их сопротивление. Этот факт, с одной стороны, указывает на возможность изменение свойств полупроводников, с другой стороны, он свидетельствует о трудностях технологии при изготовлении полупроводниковых материалов с заданными характеристиками.

Рассматривая механизм влияния примесей на электропроводимость полупроводников, следует рассматривать два случая:

Электронная проводимость.

Добавка в германий примесей, богатых электронами, например мышьяка или сурьмы, позволяет получить полупроводник с электронной проводимостью или полупроводник n – типа (от латинского слова «негативус» – «отрицательный»).

Дырочная проводимость

Добавка в тот же германий алюминия, галлия или индия создает в кристалле избыток дырок. Тогда полупроводник будет обладать дырочной проводимостью – полупроводник p – типа.

Дырочная примесная электропроводимость создется атомами имеющими меньшее количество валентных электронов, чем основные атомы. На рис. 4 схематично показаны электронные связи германия с примесью бора. При 0 К все связи укомплектованны, только у бора не хватает одной связи (см рис. 4а). Однако при повышении температуры бор может насытить свои связи за счет электронов соседних атомов (см рис. 4б).

Подобные примеси называются акцепторными.


2. Жидкие полупроводники

Плавление многих кристаллических полупроводников сопровождается резким увеличением их электропроводности Q до значений типичных для металлов (см рис. 5а). Однако для ряда полупроводников (например HgSe, HgTe и. т.д.) характерно сохранение или уменьшение Q при плавлении и сохранение полупроводниками характера температурной зависимости Q (см рис. 5б). Некоторые Жидкие полупроводники при дальнейшем повышении температуры теряют полупроводниковые свойства и приобретают металлические (например, сплавы Te – Se, ботатые Te). Сплавы же Te – Se, богатые Se ведут себя иначе, их электропроводность имеет чисто полупроводниковый характер.

В Жидких полупроводниках роль запрещенной зоны играет область энергии вблизи минимума плотности состояний в энергетическом спектре электронов.

При достаточно глубоком минимуме в его окрестности появляеся зона почти локализованных состояний носителей зарядов с малой подвижностью (псевдощель). Если при повышении температуры происходит «схлопывание» псевдощелей, жидкий полупроводник превращается в металл.

3. Понятие об активных диэлектриках

Активные диэлектрики

Активными диэлектриками, или управляемыми диэлектриками, принято называть такие диэлектрики, свойства которых существенно зависят от внешних условий – температуры, давления, напряженности поля и так далее. Такие диэлектрики могут служить рабочими телами в разнообразных датчиках, преобразователях, генераторах, модуляторах и других активных элементах.

К активным диэлектрикам относят сегнетоэлектрики, пьезоэлектрики, электреты, материалы квантовой электроники, суперионные проводники и др. Строгая классификация активных диэлектриков невозможна, поскольку один и тот же материал может проявлять признаки различных активных диэлектриков. Так, сегетоэлектрики часто сочетают свойства пьезоэлектриков. Кроме того, нет резкой границы между активными и пассивными диэлектриками. Один и тот же материал в зависимости от условий эксплуатации может выполнять либо функции пассивного изолятора, либо активные функции преобразующего или управляющего элемента.

Сегнетоэлектрики

Сегнетоэлектриками называют материалы, обладающие спонтанной поляризацией, направление которой может быть изменено с помощью

http://www.radioland.net.ua/images/referats/12/image001.gifText Box: Рисунок 1 Кривая поляризации сегнетоэлектрика и петля диэлектрического гистерезиса.

внешнего электрического поля.

В отсутствии внешнего электрического поля сегнетоэлектрики, как правило, имеют доменную структуру, то есть разбиваются на микроскопические области, обладающие спонтанной поляризацией. В принципе, у ферромагнетиков также имеются домены – области спонтанного намагничивания, поэтому поведение сегнетоэлектриков в электрическом поле подобно поведению ферромагнетиков в магнитном поле. Единственным различием между сегнетоэлектриками и ферромагнетиками является то, что при помещении их в электрическое поле меняется вектор электрического смещения D = E + P, а у ферромагнетиков при помещении в магнитное поле меняется индукция B = H+I.

За рубежом сегнетоэлектрики называют ферроэлектриками, поскольку сегнетоэлектрики являются формальными аналогами ферромагнетиков.

Отечественное название – сегнетоэлектрики произошло от сегнетовой соли, двойной калий-натриевой соли винно-каменной кислоты (NaKC4H4O6). Сегнетова соль была первым материалом, в котором обнаружена спонтанная поляризация. Свойства сегнетовой соли были всесторонне исследованы И.В. Курчатовым совместно с П.П. Кобеко в начале тридцатых годов двадцатого века. Монокристаллы сегнетовой соли нашли широкое применение для изготовления различных приборов в годы Великой Отечественной войны, однако в настоящее время сегнетова соль утратила свое техническое значение из-за низкой влагостойкости и низких механических свойств. Очень интенсивно начали развиваться фундаментальные и прикладные работы по сегнетоэлектричеству после открытия Б.М. Вулом (1944 г.) сегнетоэлектрических свойств титаната бария BаTiO3.

На примере BаTiO3 рассмотрим структуру и свойства сегнетоэлектриков.

Химические связи в BаTiO3 ионно-ковалентные. Титанат бария кристаллизуется в структуру типа перовскит. Элементарную ячейку решетки такого типа можно представить следующим образом: основу структуры составляют кислородные октаэдры, в центре которых расположены ионы титана. В свою очередь, ионы кислорода центрируют грани куба, составленного из ионов бария.

Размеры элементарной ячейки больше удвоенной суммы ионных радиусов ионов титана и кислорода. Поэтому ион титана имеет некоторую свободу перемещения в кислородном октаэдре.

При достаточно высоких температурах тепловая энергия иона титана достаточна для того, чтобы он непрерывно перебрасывался от одного иона кислорода к другому, поэтому усредненное положение иона титана находится в центре элементарной ячейки, и элементарная ячейка является симметричной – кубической.

Понижение температуры ведет к снижению кинетической энергии иона титана и при некоторой температуре (ниже 120 °С) он локализуется вблизи одного из ионов кислорода. В результате, симметрия в расположении заряженных частиц нарушается, и элементарная ячейка приобретает дипольный момент. В соседней элементарной ячейке ион титана смещается к отрицательному полюсу образовавшегося диполя. Таким образом, соседние элементарные ячейки становятся спонтанно поляризованными.

Одновременно со спонтанной поляризацией идет деформация кристаллической решетки, и кубическая решетка становится ромбоэдрической.

Итак, ниже некоторой температуры (температуры Кюри) сегнетоэлектрики самопроизвольно поляризуются, и при этом деформируется их кристаллическая решетка. Выше температуры Кюри сегнетоэлектрики переходят в параэлектрическое состояние, и кристаллическая решетка становится симметричной. Изменение типа кристаллической решетки при переходе через точку Кюри принято называть фазовым переходом.

Образование доменов в кристаллах сегнетоэлектриков связано с тем, что в том случае, когда все соседние элементарные ячейки кристалла поляризованы в одном и том же направлении, вокруг кристалла появляется внешнее электрическое поле. Наличие электрического поля повышает энергию системы и для снижения энергии кристалл самопроизвольно разбивается на домены.

Поскольку ниже температуры Кюри симметрия кристаллической решетки уменьшается, то число направлений, вдоль которых выгодна спонтанная поляризация соседних кристаллических решеток, сравнительно мало. Такими направлениями будут направления типа <111>. Соответственно соседние домены могут быть разориентированы на 180 или на 90 градусов. Поскольку суммарные электрические моменты соседних доменов антипараллельны или перпендикулярны, то в целом кристалл сегнетоэлектрика не обладает электрическим моментом.

Важно отметить, что на границах доменов происходит постепенный поворот дипольных моментов из одного направления в другое, аналогично тому, как происходит этот поворот в ферромагнетиках. В этом еще одно сходство сегнетоэлектриков с ферромагнетиками. Очевидно, что границы доменов в сегнетоэлектриках взаимодействуют со структурными несовершенствами решетки так же, как и ферромагнетиках.

4. Рождение полупроводникового диода

Важными явились работы немецкого физика К.Ф. Брауна по исследованию проводимости целого ряда полупроводников, сернистого цинка, перекиси свинца, карборунда и других, проведенные в течении 1906 г. В результате исследований была обнаружена односторонняя проводимость полупроводников. Это послужило толчком к созданию кристаллического детектора только не К.Ф. Брауном, а американским генералом Х. Дамвуди (H.H. Dunwody) в том же 1906 г.

Нобелевская речь К.Ф. Брауна называлась «Мои работы по беспроволочной телеграфии и электрооптике». Впоследствии она была издана отдельной книгой в России, в Одессе в 1910 г.

На некоторое время кристаллический детектор уступил свое место в радиоприемнике электронной лампе. Двухэлектродная лампа, используемая для преобразования токов высокой частоты в токи звуковой (низкой) частоты, в радиоприемной и измерительной аппаратуре носит название диод-детектор. Широкое внедрение в радиотехнику электронных ламп не остановило исследований по совершенствованию кристаллических детекторов.

В 1919 году совершенствованием детектораувлексямолодой радиолюбитель Олег Владимирович Лосев. Мечтая посвятить жизнь радиотехнике, он начал с того,чтоеще совсем юным поступил рассыльным на первуюв нашей стране Нижегородскую радиолабораторию. Здесь заметили любознательного и талантливого юношу. Сотрудники лаборатории помогли ему пополнить образование, и вскоре Лосев приступил к самостоятельной научной работе.

В феврале 1922 г. 19-летний научный сотрудник Нижегородской лаборатории Олег Лосев результате целенаправленного исследования обнаружил короткий подающий участок вольтамперной характеристики кристаллического детектора, используя который, можно приводить к самовозбуждению колебательный контур. Он сконструировал радиоприемник с генерирующим кристаллом, названный 'Кристадином', что означало кристаллический гетеродин. В детекторе этого приемника использовалось пара 'цинкит – угольная нить', на которую подавалось постоянное напряжение порядка 10В. Он установил, что основным условием генерирования и усиления такой пары есть отрицательное сопротивление контактной пары детектора. Позже вместо цинкита стали использовать галенит. Для того времени открытие Лосева было очень важным. Ведь обычный детекторный приемник давал возможность слушать лишь близкие станции. Дальний прием, особенно в городах, где много помех и трудно устроить высокую и длинную антенну, оказывался практически невозможным.

Лосев сразу же опубликовал свои открытия, не запатентовав их, не требуя за них никакого денежного вознаграждения. Во многих странах радиолюбители принялись строить приемники по его схемам.

9 марта 1927 г. О. Лосев сообщил о результатах исследований детекторной пары «карборунд – стальная игла». Он обнаружил слабое свечение на стыке исследуемой поры разнородных материалов при прохождении через нее тока.

Характеристики свечения, отмеченные им в то время, сегодня являются важнейшими для современных светодиодов, индикаторов, оптронов и излучателей инфракрасногосвета. Только после освоения производство полупроводников началось использование эффекта свечения О. Лосева.

Прошло более 30 лет, прежде чем кристаллический детектор вернулся на свое место. За это время были выяснены принципы работы полупроводников и наложено их производство. Сейчас промышленность выпускает большой ассортимент кристаллических детекторов, по современной классификации они носят название полупроводниковых точечных диодов. При их изготовлении используют метод электрической формовки, т.е. мощные кратковременные импульсы токов пропускают через точечный контакт. При этом контакт разогревается, о кончик иглы сплавляется с полупроводником, обеспечивая механическую прочность. В области контакта образуется маленький полусферический р-п-переход. Такие диоды имеют устойчивые электрические параметры.

Так как в настоящее время ламповые диоды используются очень редко и наибольшее распространение получили полупроводники, то полупроводниковые диоды называют просто диодами. Сравнение вольтамперных характеристик вакуумного и полупроводникового диодов показывает, что в области прямого напряжения характеристика полупроводникового диода напоминает ламповую. Разница лишь в том, что один и тот же ток для полупроводникового диода получается при значительно меньших напряжениях. Это и является преимуществом полупроводниковых диодов при использовании их в выпрямителях. Недостаток полупроводникового диода – наличие обратного тока, хотя и небольшого по сравнению с прямым током. Диоды, используемые в схемах выпрямления, называют также вентилями.

В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германивые диоды.

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства.

В 1957 г. класс диодов пополнился новыми приборами – управляемыми полупроводниковыми вентилями. Международная электротехническая комиссия (МЭК) дала им название тиристоры. Слово «тиристор» состоит из двух слов: греческого thyra – дверь, вход и английского resistor – сопротивление. Тиристоры представляют класс полупроводниковых приборов, который подразделяется на диодные (динисторы), триодные (тринисторы), запираемые и симметричные (симисторы).

5. История развития полупроводников

После изобретения в 1904 г. Дж. Флемингом двухэлектродной лампы-диода и Л. Де Форестом в 1906 г. трехэлектродной лампы-триода в радиотехнике произошла революция. Эти изобретения позволили усиливать не только телеграфные сигналы, но и перейти к радиотелефонии – передаче по радио человеческого голоса. Помимо этого, они позволили усиливать высокочастотные колебания.

Началось бурное развитие радиотехники. Но одновременно с ним выявились недостатки применения вакуумных электронных приборов. Электронная лампа имеет небольшой срок службы. Приняв средний срок службы лампы за 500 часов, при количестве ламп в одном устройстве 2000 штук в среднем каждые 15 минут следовало бы ожидать отказа по крайней мере 1 лампы. Для обнаружения неисправности следовало проверить как минимум несколько сотен ламп. Самой уязвимой частью ламп является нить накала. При включении и выключении прибора нить поочередно раскаляется и охлаждается, что повышает вероятность ее перегорания. Для разогрева лампы требуется мощность в сотые доли ватта. Помноженная на количество ламп потребная мощность достигает нескольких сотен, а иногда тысяч ватт.
Недостатки электронных ламп особенно остро выявились в конце 40-х–начале 50-х гг. прошлого века с появлением первых электронно-вычислительных машин. Их надежность и размеры определялись именно размерами, энергетической емкостью и надежностью используемых в них вакуумных ламп.

Выход из кризиса открыли полупроводниковые приборы, которые, несмотря на свои недостатки, имели явные преимущества по сравнению с лампами: небольшие размеры, мгновенная готовность к работе ввиду отсутствия нити накала, отсутствие хрупких стеклянных баллонов. Эти необходимые в то время свойства побудили к поиску способов устранения недостатков полупроводников.

Исследования проводимости различных материалов начались непосредственно в XIX в. сразу после открытия гальванического тока.

Первоначально их делили на две группы: проводники электрического тока и диэлектрики, или изоляторы. К первым относятся металлы, газы и растворы солей. Их способность проводить ток объясняется тем, что их электроны сравнительно легко отрываются от атома. Особый интерес представляли те из них, которые обладали низким электрическим сопротивлением и могли применяться для передачи тока (медь, алюминий, серебро).

К изоляторам относятся такие вещества, как фарфор, керамика, стекло, резина. Их электроны прочно связаны с атомами.

Позже были открыты материалы, чьи свойства не подходили полностью ни под одну из вышеназванных категорий.

Эти вещества получили название полупроводников, хотя они вполне заслуживали и названия «полуизоляторы». Они проводят ток несколько лучше, чем изоляторы, и значительно хуже проводников.

К полупроводникам относится большая группа веществ, среди которых графит, кремний, бор, цезий, рубидий, галлий, кадмий и различные химические соединения – окислы и сульфиды, большинство минералов и некоторые сплавы металлов. Особенно велико значение германия, а также кремния, благодаря которым произошла поистине техническая революция в электротехнике.
Изучение свойств полупроводников начались, когда возникла потребность в новых источниках электричества. Это заставило исследователей обратиться к изучению явлений, связанных с образованием так называемой контактной разности потенциалов. Было замечено, в частности, что многие материалы, не являющиеся проводниками тока, электризуются при соприкосновении между собой. Первые опыты в этом направлении проводились в XIX в. Г. Дэви и A.G. Беккерелем.

Еще одно направление в исследовании полупроводников появилось в процессе изучения проводимости таких веществ, как минералы, соединения металлов с серой и кислородом, кристаллы, различные диэлектрики и т.п. В этих работах исследовалась величина проводимости и влияние на нее температуры. Исследование в середине XIX в. ряда колчеданов и окислов показало, что с увеличением температуры их проводимость быстро возрастает. Многие кристаллы (горный хрусталь, каменная соль, железный блеск) проявляли анизотропию (неодинаковость свойств внутри тела) по отношению к электропроводности. В 1907 г. Пирс открыл униполярную (одностороннюю) проводимость в кристаллах карборунда: их проводимость в одном направлении оказалась примерно в 4000 раз большей, чем в противоположном.

В ходе этих исследований было также установлено, что существенное влияние на проводимость полупроводников оказывают содержащиеся в них примеси. В 1907–1909 гг. Бедекер заметил, что проводимость йодистой меди и йодистого калия существенно возрастает, примерно в 24 раза, при наличии примеси йода, не являющегося проводником.

Во II половине XIX в. были открыты еще 2 явления, связанные с полупроводниками – фотопроводимость и фотоэффект.

Было обнаружено, что световые лучи влияют на проводимость отдельных веществ, среди которых особое место занимал селен. Влияние света на проводимость селена впервые открыл в 1873 г. Мэй, о чем сообщил В. Смиту, которому иногда приписывают честь этого открытия.

Необычные свойства селена использовались в ряде приборов. Так, В. Сименс соорудил физическую модель глаза с подвижными веками и с селеновым приемником на месте сетчатой оболочки. Его веки закрывались, когда к нему подносили свечу. Тот же Сименс, используя свойства селена, построил другой оригинальный физический прибор – фотометр с селеновым приемником. Корн пытался построить телефонограф, служащий для передачи изображений на расстояние.

К другому сходному явлению, связанному с действием света на материалы, можно отнести фотоэффект. Впервые это явление открыл в I половине XIX в. А.С. Беккерель. Сущность его наблюдений сводилась к тому, что два одинаковых электрода, помещенные в одном электролите при одинаковых условиях, обнаруживали разность потенциалов, когда на один из них направляли поток света.

В 1887 г. Герц заметил подобное же явление в газовой среде. Он установил, что ультрафиолетовый свет, испускаемый одной искрой, облегчает прохождение разряда в соседнем искровом промежутке, если при этом освещается отрицательный электрод. Наблюдение Герца, изученное затем А.Г. Столетовым, привело к открытию фотоэлектрического эффекта, заключающегося в испускании телами отрицательного электричества под влиянием света.

В радиотехнике вначале нашли применение некоторые окислы, в частности кристаллы цинкита и халькопирита. Было обнаружено, что они обладают свойством выпрямлять электрический ток. Это позволило применять их для детектирования радиосигналов – отделения тока звуковой частоты от несущих сигналов. В первых любительских радиоприемниках начала XX в. для детектирования использовались настоящие полупроводники. Но обращение с ними требовало больших усилий. Для приема сигналов требовалось попасть тонкой иглой в определенную точку на кристалле. Это было целое искусство и те, кто им владел, ценились на вес золота. Замена кристаллов лампами значительно упростила работу радистов.

Низкая надежность работы радиоустройств с большим количеством вакуумных электронных ламп в начале 20-х годов XX в. заставила вспомнить, что кристаллический детектор, подобный углесталистому детектору А.С. Попова, обладает не менее широкими возможностями, чем электронная лампа. В 1922 г. сотрудник Нижегородской радиолаборатории О.В. Лосев обнаружил возможность получения незатухающих колебаний с помощью полупроводникового кристаллического диода. Свой прибор Лосев назвал кристодином. На его основе ученый создал различные полупроводниковые усилители для радиоприемников.

Многие предрекали, что кристаллы со временем займут место вакуумных ламп. Но в 1920–1930-е гг. этого не произошло. Лампы удовлетворяли тогдашние запросы, постепенно раскрывались их новые достоинства и возможности.

А полупроводниковые кристаллы в то время лишь начали изучать, технологи не имели возможности производить чистые, лишенные примесей кристаллы. Многие годы физики исследовали процессы, протекающие в полупроводниках на уровне микроструктуры, и на основе этих исследований пытались объяснять их свойства. Оказалось, что так же, как и в изоляторах, в полупроводниках все электроны прочно связаны с атомами. Но эта связь непрочна, и при нагреве или под действием света некоторым электронам удается вырваться из притяжения атомов. С появлением свободных электронов электрическая проводимость полупроводников резко возрастает.

В отличие от проводников, носителями тока в полупроводниках могут быть не только электроны, но и «дырки» – места на орбите положительно заряженных частиц – ионов, образовавшихся после потери электрона. Положительный заряд этих частиц стремится захватить недостающий электрон у одного из соседних атомов. Таким образом, «дырка» путешествует по полупроводнику, переходя от атома к атому. Вместе с ней путешествует и положительный заряд, равный по значению отрицательному заряду электрона.

Один и тот же полупроводник может обладать либо электронной, либо дырочной проводимостью. Все зависит от химического состава введенных в него примесей. Так, небольшая добавка в германий примесей, богатых электронами, например мышьяка или сурьмы, позволяет получить полупроводник с электронной проводимостью, так называемый полупроводник n-типа (от лат. negativus – отрицательный). Добавка же алюминия, галлия или индия приводит к избытку «дырок» и образованию дырочной проводимости. Такие проводники называются проводниками р-типа (от лат. positivus – положительный).

Развитие полупроводников в 20–30-е гг. прошлого века позволило создать полупроводниковые приборы, термоэлектрогенераторы, сегнетоэлектрические и фотоэлектрические приборы.

В 1929 г. советский ученый А.Ф. Иоффе высказал мысль о возможности получения с помощью термоэлектрического генератора из полупроводников электроэнергии с КПД в 2,5–4%. Уже в 1940–194.1 гг. в Советском Союзе были получены полупроводниковые термоэлементы с КПД в 3%.

Во второй половине 20-х гг. XX в. были созданы твердые выпрямители переменного тока, представлявшие собой окисленную медную пластинку. Позже их стали делать из селена. Серьезным недостатком первых твердых выпрямителей были большие тепловые потери. Использование новых веществ, в частности германия, позволило резко их снизить. Были созданы опытные образцы выпрямителей переменного тока из германия и аналогичных полупроводниковых материалов с КПД до 98–99%. Полупроводниковые выпрямители удобны в эксплуатации, поскольку они миниатюрны и прочны, не требуют тока накала, потребляют немного энергии и долговечны.

Изучение свойств кристаллов показало, что выпрямление и детектирование тока происходит не на границе кристалла и металла, а вследствие образования на поверхности кристалла оксидной пленки. Для выпрямления было необходимо, чтобы пленка также обладала полупроводниковыми свойствами. Причем ее проводимость должна была отличаться от проводимости самого кристалла: если кристалл обладал п-проводимостью, то пленка должна иметь р-проводимость – и наоборот. В этом случае кристалл и пленка образуют полупроводниковый вентиль, пропускающий ток только в одну сторону.

Постепенно ученые научились получать чистые кристаллы кремния и германия, добавляя затем в них нужные примеси, создающие необходимый тип проводимости.

В начале Второй мировой войны для обеспечения приема и выпрямления сантиметровых волн в США для радиолокации стали примяться германиевые и кремниевые детекторы, обладавшие большой устойчивостью. Вскоре после войны были разработаны полупроводниковые усилители и генераторы.

1 июля 1948 г. в газете «Нью-Йорк тайме» появилась заметка о демонстрации фирмой «Белл телефон лабораториз» прибора под названием «транзистор». Он представлял собой полупроводниковый триод, несколько напоминавший по конструкции кристаллические детекторы 20-х годов. Транзистор создали физики Дж. Бардин и У. Браттейн. Его устройство было простым: на поверхности пластинки из германия, с одним общим электродом-основанием, были помещены два близко расположенных металлических стержня, один из которых был включен в пропускном, а другой – в запорном направлении. При этом пластинка обладала р-проводимостью, а стержни – n-проводимостью. Концентрация случайных примесей в пластинке германия не превышала 10'6%.

В 1951 г. У. Шокли создал первый плоскостной триод, в котором контакт между зонами с п- и р-проводимостью осуществлялся по всей торцовой поверхности кристаллов. У него, как и у точечного транзистора, был предшественник. В свое время радиолюбители, чтобы избавиться от необходимости искать необходимую точку на кристаллическом детекторе, решили перейти к плоскостным контактам, создав плоскостной диод. В нем использовались кристаллы цинкита и халькопирита. Но он обладал малой надежностью, поскольку из-за плохой поверхности окислов выпрямление осуществлялось лишь в отдельных точках.

В 1956 г. Бардин, Браттейн и Шокли были удостоены Нобелевской премии по физике за исследования полупроводников и открытие транзисторного эффекта.

1947 год. В современном понимании полупроводниковая техника стала бурно развиваться в середине XX века. Многие выдающиеся ученые внесли свой вклад в данное направление, однако создателями первого транзистоа, в 1947 году, стали американцы Дж. Бардин, У. Бреттейн и У. Шокли. Их открытие стало началом полупроводниковой эры, родившей огромное количество типов диодов и транзисторов, а позднее – интегральных микросхем.

1948–1950 годы. Не только в США, но и в других странах шли научные исследования в области полупроводников. Так физик В.Е. Лошкарев еще в 1946 году открыл биполярную диффузию неравновесных носителей тока в полупроводниках. Разработка инженером А.В. Красиловым и его группой германиевых диодов для радиолокационных станций. Во Фрязино (Моск. обл.) в НИИ-160 (НИИ «Исток»). А.В. Красиловым и С.Г. Мадоян впервые наблюдался транзисторный эффект. Создатели отечественного транзистора А.В. Красилов и С.Г. Мадоян опубликовали первую в СССР статью о транзисторах под названием «Кристаллический триод». Лабораторные образцы германиевых транзисторов были разработаны Б.М. Вулом, А.В. Ржановым, В.С. Вавиловым и др. (ФИАН), В.М. Тучкевичем, Д.Н. Наследовым (ЛФТИ), С.Г. Калашниковым, Н.А. Пениным и др. (ИРЭ АН СССР).

1955 год. Изобретатель транзистора Уильям Шокли (William Shockley) основал в Санта–Кларе компанию Shockley Semiconductor Laboratories и привлек в нее 12 молодых ученых, занимавшихся в разных фирмах германиевыми и кремниевыми транзисторами. К сожалению коллектив просуществовал не долго, буквально через два года 8 ученых покинули компанию.

1956 год. Уильям Шокли, Джон Бардин и Уолтер Браттейн были удостоены Нобелевской премии по физике «за исследования полупроводников и открытие транзисторного эффекта». На церемонии презентации Э.Г. Рудберг, член Шведской королевской академии наук, назвал их достижение «образцом предвидения, остроумия и настойчивости в достижении цели».

1957 год. Ученые, покинувшие компанию Shockley Semiconductor Laboratories, объединяют личные средства и приступают к разработке технологии массового производства кремниевых транзисторов по методу двойной диффузии и химического травления. Эта технология позволяла одновременно получать на одной пластине сразу сотни транзисторов. Имена большинства этих людей стали в дальнейшем знаковыми для электронной отрасли: Гордон Мур (Gordon E. Moore), Шелдон Робертс (C. Sheldon Roberts), Евгений Клайнер (Eugene Kleiner), Роберт Нойс (Robert N. Noyce), Виктор Гринич (Victor H. Grinich), Джулиус Бланк (Julius Blank), Джин Хоерни (Jean A. Hoerni) и Джей Ласт (Jay T. Last). Для серьезной работы собранных средств было совершенно недостаточно и тогда в качестве инвестора выступила компания Fairchild Camera and Instrument и 1 октября 1957 года была основана компания FAIRCHILD SEMICONDUCTOR. А уже через полгода FAIRCHILD SEMICONDUCTOR получила первую прибыль – компания IBM закупила 100 транзисторов по цене $150 за штуку.

1958 год. К тому времени разработка

Подобные работы:

Актуально: