Тепловой и динамический расчет двигателя
Тепловой расчет двигателя служит для определения параметров рабочего тела в цилиндре двигателя, а также оценочных показателей рабочего процесса, для оценки мощностных и экономических показателей, позволяющих оценить мощность и расход топлива.
В основе методики расчета лежит метод В.И. Гриневецкого, в дальнейшем усовершенствованный Е.К. Мазингом, Н.Р. Брилингом, Б.С. Стечкиным и др.
Задачей динамического расчета является определение сил, действующих в механизмах преобразования энергии рабочего тела в механическую работу двигателя.
В настоящей работе тепловой и динамический расчеты выполняются для режима номинальной мощности.
1. Исходные данные для теплового расчета поршневого двигателя внутреннего сгорания
Прототип двигателя ЗИЛ - 645
Номинальная мощность 145
Частота вращения коленчатого вала 2900
Число цилиндров 8
Степень сжатия 18,5
Тактность 4
Коэффициент избытка воздуха 1,73
Отношение хода поршня к диаметру цилиндра 1,05
2. Тепловой расчет и определение основных размеров двигателя
2.1 Процесс наполнения
В результате данного процесса цилиндр двигателя (рабочая полость) наполняется свежим зарядом. Давление и температура окружающей среды принимаются: , .
Давление остаточных газов в зависимости от типа двигателя . Принимаем .
Температура остаточных газов выбирается в зависимости от типа двигателя с учетом того, что для дизельных двигателей она изменяется в пределах . Принимаем .
В зависимости от типа двигателя температура подогрева свежего заряда
.
Принимаем .
Давление в конце впуска . Принимаем .
Величина потери давления на впуске , для дизелей, колеблется в пределах . Принимаем
Коэффициент остаточных газов
.
Величина коэффициента остаточных газов для дизеля изменяется в пределах .
Температура в конце впуска
.
Величина для двигателей с наддувом находится в пределах
.
Коэффициент наполнения
2.2 Процесс сжатия
Давление в конце сжатия
.
Температура в конце сжатия
.
В этих формулах - показатель политропы сжатия, который для автотракторных двигателей находится в пределах .
2.3 Процесс сгорания
Теоретически необходимое количество воздуха для сгорания 1 кг жидкого топлива
.
Средний элементарный состав дизельного топлива принимают:
Количество свежего заряда для дизельного двигателя
.
Количество продуктов сгорания при работе двигателей на жидком топливе при
.
Теоретический коэффициент молекулярного изменения
.
Действительный коэффициент молекулярного изменения
.
Величина μ для дизелей изменяется в пределах .
Низшую теплоту сгорания дизельного топлива принимаем:
.
Средняя мольная теплоемкость свежего заряда
.
Средняя мольная теплоемкость продуктов сгорания для дизелей
Значения коэффициента использования теплоты при работе дизельного двигателя на номинальном режиме следующие . Принимаем .
Максимальная температура сгорания подсчитывается по уравнению
(1)
Степень повышения давления
.
Величину степени повышения давления для дизелей с неразделенными камерами сгорания и объемным смесеобразованием выбирают в следующих пределах: . Принимаем .
Решая уравнение (1), находим :
,
,
.
Величина теоретического максимального давления цикла и степень повышения давления:
Численное значение степени повышения давления k при неразделенной камере сгорания . Принимаем .
Действительное давление
,
.
2.4 Процесс расширения
Степень предварительного расширения для дизельных двигателей
Степень последующего расширения
.
Давление в конце расширения
.
Величина среднего показателя политропы расширения для дизельных двигателей .
Температура в конце расширения
.
2.5 Процесс выпуска
Параметрами процесса выпуска ( и ) задаются в начале расчета процесса впуска. Правильность предварительного выбора величин и проверяется по формуле профессора Е. К. Мазинга:
.
Погрешность вычислений составляет
.
Т.к. погрешность вычислений не превышает 10% ,то величина выбрана правильно.
2.6 Индикаторные показатели
Среднее индикаторное давление теоретического цикла для дизельных двигателей подсчитывается по формуле:
Среднее индикаторное давление действительного цикла
,
где – коэффициент полноты диаграммы, который принимается для дизельных двигателей . Принимаем .
Величина для дизельных двигателей без наддува может изменяться.
Индикаторный КПД для дизельных двигателей подсчитывается по формуле
.
Удельный индикаторный расход топлива определяется по уравнению
.
Величина индикаторного КПД для автотракторных дизельных двигателей .
2.7 Эффективные показатели
Механический КПД дизельного двигателя . Принимаем .
Тогда среднее эффективное давление
,
а эффективный КПД
.
Удельный эффективный расход жидкого топлива
.
2.8 Размеры двигателя
По эффективной мощности, частоте вращения коленчатого вала и среднему эффективному давлению определяем литраж двигателя
,
где , , , - для четырехтактных двигателей.
Рабочий объем одного цилиндра:
.
где i=8 – число цилиндров.
Диаметр цилиндра
Принимаем диаметр цилиндра D =0,115м.
Ход поршня
.
Определяем основные параметры и показатели двигателя:
- литраж двигателя
,
- эффективную мощность
,
- эффективный крутящий момент
,
- часовой расход жидкого топлива
,
- среднюю скорость поршня
.
Определим погрешность вычисления :
, что допустимо.
Литровая мощность определяется по формуле
.
Величина литровой мощности для автотракторных дизельных двигателей колеблется в пределах .
2.9 Сводная таблица результатов теплового расчета
Таблица 1
Параметр | Вычисленное значение | Экспериментальное значение |
0.03 | 0.02…0.06 | |
330,14 | 310…400 | |
0.778 | 0.8…0.9 | |
4,19 | 3.5…5.5 | |
890 | 700…900 | |
1.037 | 1.01…1.06 | |
7,12 | 5…10 | |
7,12 | 5…10 | |
1889 | 1800…2300 | |
0.29 | 0.2…0.4 | |
1109,6 | 1000…1200 | |
0,796 | 0,75…1,5 | |
0.51 | 0.4…0.53 | |
166,04 | 163…220 | |
0,597 | 0.45…0.85 | |
0.383 | 0.3…0.42 | |
221,38 | 210…280 |
Подобные работы: