Лантаноиды и актиноиды

1. Строение.

    Лантаноиды и актиноиды располагаются в третьей побочной группе Периодической системы. Эти элементы следуют в таблице сразу после лантана и актиния и поэтому их называют соответственно лантаноиды и актиноиды.  В короткой форме  Периодической системы Д.И. Менделеева они вынесены в два последних ряда. Они  относятся к  f-элементам.

     У в атомах лантаноидов и актиноидов  происходит  запол­нение  соответственно 4f- и 5f-подуровней.

     Лантаноиды очень сходны по хими­ческим свойствам. Близость свойств соединений лантаноидов обусловлена тем, что застройка внутренней 4f-оболочки атомов мало сказывается на со­стоянии валентных электронов. В образовании химической связи 4f-электроны лантаноидов обычно не принимают участия.

    Электроны заполняют 4f-, а не 5d-подуровень потому, что в этом случае они обладают меньшей энергией. Однако разница в энер­гиях 4f- и 5d-состояний очень мала. Благодаря этому один из 4f -электронов (а в некоторых случаях, например, у церия, два 4f--электрона) легко возбуждается, переходя на 5d-подуровень, и становится,   таким   образом,   валентным   электроном.   Поэтому   в большинстве своих соединений лантаноиды имеют степень окисления  +3, а не +2. Это обстоятельство объясняет близость свойств лантаноидов к свойствам элементов подгруппы скандия.

   В  пределах одного периода с возрастанием поряд­кового номера размеры атомов элементов уменьшаются. Подобная закономер­ность наблюдается не только для элементов главных подгрупп, но, за немно­гими исключениями, и для элементов побочных подгрупп. Такое же уменьше­ние радиусов атомов имеет место и в случае лантаноидов (лантаноидное сжатие).

   Как и в случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьего снаружи электронного слоя (подуровня 5f); строение же наружного и, как правило, предшествующего электронных слоев остается неизменным. Это служит причи­ной близости химических свойств актиноидов. Однако различие в энергетическом состоянии электронов, занимающих 5f- и 6d-подуровни в атомах актиноидов, еще меньше, чем соответствующая разность энергий в атомах лантаноидов. Поэтому у первых членов семейства актиноидов 5f-электроны легко переходят на подуровень 6dи могут принимать участие в образовании химических связей. В результате от тория до урана наиболее характерная степень окисления элементов возрастает от +4 до +6. При дальнейшем продвижении по ряду актиноидов происходит энергетическая ста­билизация 5f-состоянии, а возбуждение электронов на 6d-подуровень требует большей затраты энергии. Вследствие этого от урана до кюрия наиболее характерная степень окисления элементов понижается от +6 до +3 (хотя для нептуния и плутония полу­чены соединения со степенью окисления этих элементов +6 и +7). Берклий и следующие за ним элементы во всех своих соединениях находятся в степени окисления +3.

2. Свойства.

Ø   Свойства лантаноидов.

     В виде простых веществ все лантаноиды представляют собой серебри­сто - белые металлы (желтизна празеодима и неодима обусловлена образованием на поверхности пленки оксидов). Они хорошо куются. Почти все лантаноиды парамагнитны, только гадолиний, диспрозий и голь­мий проявляют ферромагнитные свойства.

В ряду Се—Lu в изменении плотности, температур плавления и кипения проявляется внутренняя перио­дичность, т. е. указанные свойства металлов подсемей­ства церия изменяются с такой же последовательно­стью, как и у металлов подсемейства тербия (табл.1 ).

                                                                              Таблица 1.

                Физические свойства лантаноидов

       Металл

Плотность,

кг/м3

Температура , 0 С

плавлениякипения

Подсемейство церия

Лантан            61209203420
Церий67708043470
Празеодим67709353017
Неодим701010243210
Прометии

Самарий754010721670
Европий52408261430
Гадолиний789013122830

Подсемсйстео тербия

Тербий825013682480
Диспрозий856013802330
Гольмий878015002380
Эрбий906015252390
Тулий932016001720
Иттербий69508241320
Лютеций985016752680

    Температуры плавления в этом ряду возрастают, исключение составляют только европий и иттербий. Они имеют также относительно более низкие, чем у остальных элементов, температуры кипения.

    Ланта­ноиды, как и лантан, по реакционной способности уступают лишь щелочным и щелочноземельным метал­лам. Во влажном воздухе они быстро тускнеют (вследствие образования оксида)  , а при нагревании до 200—400°С на воздухе воспламеняются и сгорают с образованием смеси оксидов (Э203) с ни­тридами (ЭN). Церий в порошкообразном состоянии даже при обычных условиях легко воспламеняется на воздухе. Это свойство церия нашло применение при изготовлении кремней для зажигалок.

                                           4Э +3О2 =2Э2О3

    Лантаноиды взаимодействуют с галогенами, а при нагревании — с азотом, серой, углеродом, кремнием, фосфором, водородом.

                                        2Э +3Cl2=2ЭCl3

                                        2Э +N2= 2ЭN

                                        Э +2S = ЭS2

                    Э + 2 С = ЭС2 или  2Э + 3С = Э2С3

                                        Э + Н2 = ЭН2

    Карбиды, нитриды и гидриды лантаноидов взаимодействуют с водой с образованием  гидроксида и соответственно ацетилена или различных углеводородов, аммиака и водорода.

                              ЭN + 3Н2О =  Э(ОН)3 +NН3

                              ЭС2 + Н2О =   Э(ОН)32Н2

                              ЭН22О =   Э(ОН)3  +Н2

    Находясь в ряду напряжений значительно левее водорода (электродные потенциалы их колеблются е пределах от —2,4 до —2,1 В), ланта­ноиды окисляются горячен водой по реакции:

                                       2Э + 6Н20 = 2Э(ОН)3 + 3Н2.

    Они хорошо взаимодействуют с разбавленными растворами НС1, HN03 и H2S04.

                                        2 Э +6НCl =2 ЭСl3 +3H2

    В растворах фосфор­ной и плавиковой кислот лантаноиды устойчивы, так как образуют защитные пленки малорастворимых со­лей. В водных растворах щелочей лантаноиды не рас­творяются. Химическая активность элементов в ряду Се—Lu несколько снижается, что связано с умень­шением радиусов их атомов и ионов.

     Оксиды лантаноидов от­личаются высокой химической прочностью и тугоплав­костью. Например, La203 плавится при температуре выше 2000°С, а Се02 — около 2500°С. В воде они практически нерастворимы, хотя  интенсивно (с выделением теплоты) взаимодействуют с ней с образованием соответствующих гидроксидов Э(ОН)3. Гидроксиды также труднорастворимы в воде. В ряду лантаноидов основная сила гидроксидов постепенно уменьшается с уменьшением радиусов в результате лантаноидного сжатия. С уменьшением ионных радиусов увеличивается прочность связи с кислородом. Поэтому гидроксиды последних лантаноидов -  иттербия и лютеция – проявляют слабую амфотерность .        

     Оксиды и гидроксиды лантаноидов растворяются в кислотах (кроме HF и Н3Р04).   

     Соли лантаноидов со степенью окисления +3 почти не гидролизуются, поскольку Э(ОН)3 -довольно силь­ные основания. Хорошо растворимые соли (хлориды, нитраты, сульфаты) обра­зуют различные кристаллогидраты. Мало растворимы фториды, карбонаты, фос­фаты, оксалаты. Многие соли Э3+ образуют с аналогичными солями щелочных металлов хорошо кристаллизующиеся двойные соли. Раньше их применяли для разделения РЗЭ кристаллизацией.

                             Э2(SO4)3 + Ме2SO4 = Ме2SO4· Э2(SO4)3

Ионы Э3+ в водном растворе образуют гидратные комплексы          (Э(H20)n)3+, n=8.  Гидратированные ионы окрашены: Се3+- бесцветный,  Рr+3 - желто-зеленый, Nd3+ - красно-фиолетовый, Рm3+ - розовый, Sm3+ -желтый, Eu3+, Gd3+, Tb3+  - бесцветные, Dy3+ - бледно-желто-зеленый,    Но+3- коричневато-желтый, Ег+3- розовый, Тm - бледно-зеленый, Yb3+, Lu3+   — бесцветные. Ион Ce4+(p) имеет ярко-желтую окраску.

Некоторые лантанои­ды имеют, помимо характеристической, еще степени окисления +4 и+2. Среди лантаноидов, проявляющих степень окисления +4, выделяется церий. Относительно более стабильные соединения в степени окисления +2 дает европий.

   Диоксид СеО2 образуется при непосредственном взаимодействии компонентов  . Он плавится при 2600 0 С под давлением кислорода, начинает отщеплять кислород только при 2300 0С. При 1250 0С Се02 восстанавливается водородом до Се203. Диоксид церия не растворяется в воде, а после прокали­вания и в кислотах, и в щелочах. СеО2 -.является сильным окислите­лем, например, выделяет хлор из соляной кислоты:

                          2CeO2 +8HCI = 2CeCl3 +CL2 + H20

    Гидроксид церия Се(ОН)4 при взаимодействии с кислотами-восстано­вителями образует соли со степенью окисления це­рия +3:

                          2Се(ОН)4 + 8НС1 = 2СеС13 + С12 + ЗН20.

     Из солей кислородсодержащих кислот, содержащих ионы лантаноидов со степенью окисления +4, известны только произ­водные церия. Сульфат Ce(S04)2 получается нагреванием Се02 с горячей концентрированной серной кислотой. Ce(S04)2 — порошок желтого цвета, хорошо растворяется в воде, подвергается гидроли­зу. Сульфат церия из водных растворов выделяется в виде розовых кристаллов с различным содержанием воды, среди которых домини­руют кристаллогидраты с 8 молекулами воды. Известны только ос­новные нитраты и карбонаты: Ce(OH)(N03)3 и Се2(ОН)2(СО3)3. В то же время Се (+4) образует устойчивые ацетат и перхлорат: Се(СН3СОО)4, Се(С104)4.

    Для Ce(+4) известны довольно устойчивые комплексы (Се(С2О4)3)'2_ и (Се(N03)6)-2. Из галогенидных комплек­сов наиболее устойчивы фторидные.

    Степень окисления +2 наиболее характерна для европия, хотя известны оксиды, галогениды и сульфаты самария и иттербий в степени окисления +2. На­греванием на воздухе Eu203 с графитом до 1700 0С получен темно-коричневый оксид ЕuО. Монооксид европия — тугоплавкие куби­ческие кристаллы — медленно разлагается водой с выделением во­дорода, т. е. является сильным восстановителем. Известны также монооксиды самария и иттербия . Восста­новлением EuF3 водородом при 1000 0С можно получить дифторид EuF2. Известны дихлориды, дибромиды, дииодиды Sm, Eu, Tm и Yb. Их устойчивость в указанном ряду лан­таноидов снижается слева направо и, естественно, от хлоридов к иодпдам.

Катодным восстановлением сульфатов Э(+3) получены белый EuSO4, светло-зеленый YbSO4, и красный SmSO4.     

    Все производные лантаноидов в степени окисления +2 являются восстановителями, например :

                    2 YbSO4 +H2SO4 = Yb2(SO4)3 + H2

Ø Свойства актиноидов

   Из актиноидов наибольшее значение имеют лишь торий, уран и  плутоний. Поэтому рассмотрим их более подробно.

   Торий, уран и плутоний - серебристо-белые твердые ме­таллы, на воздухе быстро покрываются темной пленкой из оксидов и нитри­дов.   Некоторые      физические   свойства   некоторых актиноидов   указаны   в   табл.  2

                                                                                        Таблица 2.

 Физические свойства некоторых актиноидов

Металл

Плотность, кг/м3

Температура, °С
плавлениякипения
Актиний-1 100

-

Торий1172017503 000-4 400
Протактиний15 3701 873

Уран19 0401 1323818
Нептуний20 450637

Плутоний19 7406403 235
Америций13 6709952 607
Кюрий13 5001340-  

     Данные   элементы   радиоактивны,   периоды   полураспада   для    232Th,    238U   и   239Pu   состав­ляют соответственно 1,40 •1010, 4,5•109  и 24 400 лет.                                         

    Строение внешних электронных оболочек атомов: 6d27s2, U 5f 36d17s2, Pu 5f6 7s2. Таким образом, в атоме Pu происходит «провал»  электрона на 5f-оболочку.

    Торий, являющийся аналогом церия, проявляет степени окисления +2, +3 и +4, две первые редки, последняя - характерна. Стабильность степени окисления +4 связана с тем, что ион Th4+ имеет электронную конфигурацию атома Rn. Как уже указано выше, характерными степенями окисления урана являются +4 и +6, последняя представлена большим числом соединений (ион U6+ имеет электронную конфигурацию Rn). Плутоний проявляет степени окисления от +3 до +7, наиболее распространены соединения Pu+4   .

   Для остальных актиноидов характерны следующие степени окисления :

протоактиний                       +4, +5 и +6

нептуний и плутоний          наиболее характерна степень окисления +3 и 

                                               +4, получены соединения со степенями                                          

                                                окисления+6 и +7

америций и кюрий                наиболее характерна степень окисления +3,

                                                имеются соединения со степенью окисления

                                                +4.

берклий следующие             наиболее характерна степень окисления +3.

за ним элементы                  

    Актиноиды, подобно лантаноидам, характеризуют­ся высокой химической активностью. В высокодисперсном состоянии Th, U и Pu активно погло­щают водород, образуя нестехиометрические металлоподобные соединения, состав которых приближается к ЭНз. Термическое разложение UH3 можно ис­пользовать для получения особо чистого водорода.

     При нагревании в присутствии кислорода эти металлы образуют' оксиды: бесцветный ТhO2, темно-коричневый UO2, желто-коричневый РuO2.

                                              Э +О2 =ЭО2

 Это туго­плавкие соединения, особенно ТhO2 (т. пл. 3220 °С). При более сильном нагревании (до красного каления) уран образует темно-зеленый оксид U3O8, формулу этого соединения можно записать U2+4U+6O8 .

    Гидроксиды Э(ОН)3 малорастворимы в воде и имеют основный характер. Гидроксиды Э(ОН)4 имеют основный   характер   и   также   нерастворимы   в   воде

    Рассматриваемые метал­лы реагируют с кислотами, образуя соли Э+4.

                                Э + 2Н2SO4 = Э(SO4)2 + 2H2

    Соли, в которых актиноиды находятся в состоянии окисления +4, напоминают по свойствам соли Се4+. Соли актиноидных метал­лов, в которых последние находятся в степени окисле­ния +3, сходны по свойствам с аналогичными солями лантаноидов.

     При действии на уран избытка фтора образуется гексафторид UF6 бесцветное, легко возгоняющееся кристаллическое вещество (давление его пара 101 кПа при 56,5 °С). Это единственное соединение урана, сущест­вующее в газообразном состоянии при низкой температуре. Данное обстоя­тельство имеет большое практическое значение, поскольку разделение изо­топов 235U и 238U (с целью получения атомной энергии) осуществляют с по­мощью процессов, протекающих в газовой фазе (центрифугирование, газовая диффузия). При растворении в воде UF6 гидролизуется

                                     UF6 +2Н2О =   UО2F2  +4HF

    Тетрафторид UF4 получают действием HF на UО2.

                                  UО2 + 4 HF = UF4 + 2Н2О

    Аналогичными  свойствами обладают гексафториды нептуния и плутония.

    С хлором уран образует легко растворяющийся в воде тетрахлорид UCl4. При избытке хлора получает­ся UCI5, легко диспропорционирующий на UCl4 и UC16 .

При нагревании уран активно взаимодействует с азотом, серой и другими элементными веществами.

   Соединения U+4 в подкисленных водных растворах легко окисляются  до шестивалентного состояния с образованием ярко-желтых солей уранила. Поскольку с увеличением заряда иона актиноида усиливается его взаимодействие с водой (гидролиз), то в водном растворе ионы Э5+ и Э6+ не существуют. В воде они превращаются соответственно в ионы ЭО2+ и ЭО22+. Связи атомов кислорода с ионами акти­ноидов в состоянии окисления +5 и +6 настолько прочны, что ионы ЭО2+ и ЭО22+остаются неизменными при многих химических превращениях. Гидроксид уранила при нагревании разлагается, образуя оксид UО3. При действии Н2О2 на раствор нитрата ура­нила образуется желтый пероксид урана:

                       U02(N03)2 + Н202 + 2Н20 =U04 •2Н20 ¯+ 2HN03

    Для соединений актиноидов чрезвычайно характер­ны реакции диспропорционирования. Например, ион пятивалентного плутония РuО2+ в водном растворе диспропорционирует на ионы трехвалентного и шести­валентного плутония:

                              3Pu02+ + 4Н+ = Рu3+ + 2PuO22+ + 2Н20

      Многие соли актиноидов хорошо растворимы в различных органических растворителях, не смешиваю­щихся с водой. На этом основана экстракция соеди­нений актиноидов органическими веществами из вод­ных    растворов.   Экстракционные    процессы    нашли широкое применение в технологии выделения и разделения, близких по свойствам актиноидов.

3. f –элементы в природе и их применение.

       В природе лантаноиды очень рас­сеяны и в свободном виде не встречаются, а лишь в; сочетании друг с другом или с лантаном и иттрием. При отделении рассматриваемых элементов друг от друга большие трудности возникают ввиду чрезвычай­ного сходства свойств лантаноидов. Содержание лан­тана и лантаноидов в земной коре составляет 0,01 %' (масс), т. е. примерно такое же, как меди. Наиболее распространены гадолиний, церий и неодим, наиболее редко   гольмий, тулий и лютеций.

      Очень редко встречается радиоактивный элемент прометий. Впервые он выделен в 1947 г. из продуктов деления урана в ядерном реакторе.

      Лантаноиды обычно получают электролизом рас­плавленных хлоридов или фторидов. Они могут быть также получены металлотермическим способом при восстановлении фторидов или хлоридов активными металлами.

     Лантаноиды используют в производстве особых марок чугуна и высококачественных сталей. Введение, этих элементов в чугун в виде ферроцерия (сплав церия с железом) или сплава различных лантаноидов повышает прочность чугуна. Небольшие добавки лан­таноидов к стали очищают ее от серы, азота и других примесей, так как лантаноиды, являясь химически активными металлами, взаимодействуют с примесями. При этом повышаются прочность, жаропрочность и коррозионная    устойчивость    сталей.   Такие    стали пригодны для изготовления деталей сверхзвуковых самолетов, оболочек искусственных спутников Земли. С помощью лантаноидов получают также жаропроч­ные сплавы легких металлов —магния и алюминия. Благодаря сплавам лантаноидов проводят металлотермическое восстановление многих металлов (титана, ва­надия, циркония, ниобия, тантала и др.), используя в этом процессе большое сродство лантаноидов к кис­лороду.

     Важную роль играют лантаноиды и в силикатной промышленности. При добавлении к жидкой массе стекла оксидов лантаноидов стекло приобретает высо­кую прозрачность. Оно становится при этом устойчи­вым не только к действию ультрафиолетовых лучей, но и к рентгеновскому излучению. Стекла с добавкой лантаноидов необходимы для астрономических и спек­троскопических приборов. Стекла окрашиваются в ярко-красный цвет от присутствия Nd203, в зеленый — от Рr203. Оксиды лантаноидов пригодны также для окраски фарфора, глазурей и эмалей.

    Оксиды гадолиния, самария и европия входят в состав защитных керамических покрытий от тепловых нейтронов в ядерных реакторах. Соединения ланта­ноидов входят в состав красок, лаков, люминофоров (светящиеся составы), катализаторов.

    Все актиноиды радиоактивны. За период существо­вания Земли большинство из них полностью распа­лось и в настоящее время в природе не встречаются. Поэтому их получают искусственно. Существование в природе тория, протактиния и урана объясняется тем, что они имеют сравнительно стабильные изотопы, т.е. изотопы с большим периодом полураспада.

   Промышленным источником тория служат монацитовые пески. Они также являются сырьем для полу­чения редкоземельных элементов. Известны богатые по содержанию минералы торит ThSi04  и  торианит (Th,U)02. Однако они редко встречаются в природе и не образуют больших скоплений.

     Протактиний чрезвычайно рассеянный элемент. Его добывают из отходов переработки урана. Однако в настоящее время изотоп протактиния-231 синтези­руют искусственным путем в ядерных реакторах. Та­ким способом его получают в больших количествах, чем из уранового сырья.

     Для урана известно около 200 минералов. Однако промышленное значение имеют лишь немногие. К их числу относится минерал настуран (урановая смолка, или урановая обманка). Обычно ему приписывают формулу U3O8. Довольно широко распространен так­же минерал отэнтит - Ca(U02)2(P04)2•H20. В нич­тожных количествах в природе также встречаются нептуний и плутоний. Однако их существование объ­ясняется тем, что в природе происходят ядерные про­цессы, подобные тем, которые человек производит в ядерных реакторах.

    В настоящее время в различных странах мира су­ществует хорошо налаженное производство актиноид­ных металлов в следующих масштабах (за один год):

Нептуний     Десятки килограм-          Калифор-      Доли грамма

                       мов                                   ний

Плутоний     Тонны                               Эйнштей-     Доли миллиграмма

Америций     Десятки килограм-           ний

                       мов                                    Фермий        Миллиарды атомов

Кюрий          Килограммы                     Менделевий Тысячи атомов

Берклий        Дециграммы

     Из актиноидов наибольшее применение нашли уран и плутоний. Дело в том, что ядра двух изотопов урана (235U и 233U), а также двух изотопов плутония (239Рu и 241Рu) при захвате нейтрона способны де­литься на два осколка, причем в каждом акте ядер­ного деления, наряду с осколками, делящееся ядро испускает два или три нейтрона. Благодаря этому ста­новится возможным не только продолжение начавшегося деления ядер, но и ла­винообразное его нараста­ние (рис. 1).

    Деление ядер связано с огромным выделением энер­гии. Так, при делении урана-235 происходит выделе­ние около 75 млн. кДж энергии на 1 г урана. Это обусловило использование урана   и   плутония   в  качестве ядерного горючего в атомных энергетических установках и в качестве взрывчатого вещества в атом­ных бомбах.

      Для взрыва ядерного материала необходимо такое развитие цепного процесса, при котором выделив­шаяся  энергия достигнет взрывного порога. Это может быть обеспечено при определенной массе делящегося вещества. Минимальную массу этого вещества, необ­ходимую для взрыва, называют критической. Однако, если два куска делящегося материала, которые в сум­ме составляют критическую массу, находятся на каком-то расстоянии друг от друга, то взрыва не про­исходит. Достаточно соединить эти куски и произой­дет взрыв. После сказанного будет понятен принцип устройства атомной бомбы (рис. 2): запал 4 обеспе­чивает взрыв обычного взрывчатого вещества 1, это приводит в соприкосновение куски ядерного горючего 2, которые вместе составляют критическую массу, и происходит взрыв.

4.    Используемая литература.

1. Петров М.М. и др. Неорганическая химия. - Л.: Химия, 1998.

2. Угай Я.А. Неорганическая химия : Учебник для хим. Спец. Вузов. – М.: Высшая школа, 1989.

3. Карапетьянц М.Х. , Дракин С.И. Общая и неорганическая химия. Учебник для вузов. – М.: Химия,1993.

4. Глинка Н.Л. Общая химия.- Л.: Химия, 1975.

Подобные работы:

Актуально: