Влияние предшественника лей-энкефалина на активность ферментов обмена регуляторных пептидов головного мозга и периферических органов крыс в норме и при эмоционально-болевом стрессе
ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Г. БЕЛИНСКОГО
На правах рукописи
ФИРСТОВА Наталья Вадимовна
ВЛИЯНИЕ ПРЕДШЕСТВЕННИКА ЛЕЙ-ЭНКЕФАЛИНА НА АКТИВНОСТЬ ФЕРМЕНТОВ ОБМЕНА РЕГУЛЯТОРНЫХ ПЕПТИДОВ ГОЛОВНОГО МОЗГА И ПЕРИФЕРИЧЕСКИХ ОРГАНОВ КРЫС В НОРМЕ И ПРИ ЭМОЦИОНАЛЬНО-БОЛЕВОМ СТРЕССЕ
03.00.04 – Биохимия
Диссертация на соискание
ученой степени кандидата
биологических наук
Научный руководитель
кандидат биологических наук
профессор Генгин М.Т.
ПЕНЗА – 1999
СОДЕРЖАНИЕ
СПИСОК СОКРАЩЕНИЙ…………………...…………..………………...….5
ВВЕДЕНИЕ……………………………………………..……………...……….6
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ…..……………..……………………...…11
1.1. Опиоидные пептиды и физиолого-биохимические аспекты их действия……………………………………………………...…………………11
1.2. Обмен регуляторных пептидов ………………………………..………..18
1.2.1. Биогенез нейропептидов………….......................................……….18
1.2.2. Механизмы регуляции активности ферментов обмена нейропептидов..………………………………………….…………..………..30
1.3. Опиоидные пептиды при воздействии стрессорных факторов..……...34
1.4. Ферменты обмена нейропептидов при стрессе………………….......…41
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ…….…………48
2.1. Материалы исследования……………………………………..………....48
2.2. Методы исследования………………………………………..…………..49
2.2.1. Схема введения предшественника лей-энкефалина ……………...49
2.2.2. Моделирование острого эмоционально-болевого стресса……….49
2.2.3. Метод определения активности карбоксипептидазы Н……..……50
2.2.4. Метод определения активности ФМСФ-ингибируемой карбоксипептидазы……………………………………………....……...…51
2.2.5. Метод определения активности ангиотензинпревращающего фермента………………………………………………………………...…….51
2.2.6. Методы определения активности КПН, ФМСФ-ингибируемой КП и АПФ in vitro…………………………...……...……………………..……..52
2.2.7. Метод определения белка по Лоури………………..…...…………52
2.2.8. Статистическая обработка результатов исследования...………….52
ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ………………….………….53
3.1. Региональное и тканевое распределение КПН, ФМСФ-ингибируемой КП и АПФ у самцов крыс..……………………………...…………………....53
3.1.1. Распределение активности КПН………………….……………...…53
3.1.2. Распределение активности АПФ………………………….………...54
3.1.3. Распределение активности ФМСФ-ингибируемой КП ……...…...55
3.2. Исследование влияния острого эмоционально-болевого стресса на активность КПН, ФМСФ-ингибируемой карбоксипептидазы и АПФ……56
3.2.1. Активность КПН в головном мозге надпочечниках и семенни-ках крыс при воздействии острого эмоционально-болевого стресса…….57
3.2.2. Активность ФМСФ-ингибируемой КП в головном мозге надпочечниках и семенниках крыс при воздействии острого эмоционально-болевого стресса ……………..……………………………………..…....60
3.2.3 Активность АПФ в головном мозге надпочечниках и семенниках крыс при воздействии острого эмоционально-болевого стресса ……....62
3.3. Исследование влияния предшественника лей-энкефалина на активность КПН, ФМСФ-ингибируемой КП и АПФ…..………………... 65
3.3.1. Активность КПН в головном мозге, надпочечниках и семенниках крыс при введении лей-энкефалин-арг…………………………………...67
3.3.2. Активность ФМСФ-ингибируемой КП в головном мозге, надпочечниках и семенниках крыс при введении лей-энкефалинарг..……69
3.3.3. Активность АПФ в головном мозге, надпочечниках и семенниках крыс при введении лей-энкефалин-арг……………….……...………...…72
3.4. Исследование влияния лей-энкефалин-арг на активность КПН, ФМСФ-ингибируемой КП и АПФ in vitro…………………..………………..…..74
3.5. Исследование влияние лей-энкефалин-арг на активность КПН, ФМСФ-ингибируемой карбоксипептидазы и АПФ у крыс на фоне острого эмоционально-болевого стресса..........…..………...………………..…...75
3.5.1. Активность КПН при введении лей-энкефалин-арг на фоне острого эмоционально-болевого стресса..…..…………………………………....77
3.5.2. Активность ФМСФ-ингибируемой карбоксипептидазы при введении лей-энкефалин-арг на фоне острого эмоционально-болевого стресса……………………………………………………………………....80
3.5.3. Активность АПФ при введении лей-энкефалин-арг на фоне острого эмоционально-болевого стресса………........…………….………………84
ГЛАВА 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ…………88
ВЫВОДЫ……………………..…………………………………………...…114
ЛИТЕРАТУРА………………………………..………………………...…....116
ПРИЛОЖЕНИЕ…………….…………..…………………………...…….....146
СПИСОК СОКРАЩЕНИЙ
АКТГ - адренокортикотропный гормон
АПФ- ангиотензинпревращающий фермент
ГГНС- гипоталамо-гипофизарно-надпочечниковая система
ГГБ- гисто-гематический барьер
ГЭБ- гемато-энцефалический барьер
ГЭМЯК - гуанидилэтилмеркаптоянтарная кислота
КП - карбоксипептидаза
КПН - карбоксипептидаза Н
ПВДС (ДСИП) - пептид, вызывающий дельта сон (дельта-сон инду-
цирующий пептид)
САС- симпато- адреналовая система
ФМСФ- фенилметилсульфонилфторид
ЭБС- эмоционально-болевой стресс
ВВЕДЕНИЕ.
Одной из наиболее актуальных проблем современной биологии и медицины является исследование влияния острых стресс-факторов на организм. Особый интерес вызывает изучение молекулярных механизмов возникновения и развития стресса. Известно, что кратковременное острое стрессирование приводит к экстренной и генерализованной активации ряда физиологических систем, участвующих как в процессах развития (стресс-реализующие), так и в процессах торможения (стресс-лимитирующие) стресс-реакции (4, 5, 21, 29, 33, 116, 121, 125, 144, 145). Ведущая роль в регуляции функций этих систем принадлежит нейропептидам, веществам, выступающим в организме в роли нейромедиаторов, нейромодуляторов и гормонов (126, 134, 204, 221, 258). В ответ на стресс в первую очередь вовлекаются пептиды гипофиза: адренокортикотропин (АКТГ), b-эндорфин, пролактин (136). Важную роль в адаптации организма к стрессу играют эндогенные биологически активные пептиды - компоненты стресс-лимитирующих систем: вещество Р, пептид, вызывающий дельта сон, энкефалины (27, 28, 69, 107, 110, 135, 152, 241). Одной из наиболее универсальных стресс-лимитирующих систем, обеспечивающих адаптацию к изменениям, вызванным реакцией на действие экстремального фактора, является система эндогенных опиоидных пептидов (14, 103, 104, 116, 125, 266). Выраженным антистрессорным действием обладают, в частности, энкефалины (23, 69, 134, 140, 266). Установлено, что при воздействии стресса содержание опиоидов в структурах мозга, крови и ликворе животных увеличивается (33, 34, 140, 243).
Уровень биологически активных пептидов, а, следовательно, и степень реализации ответной реакции физиологических и биохимических систем на воздействие стресс-фактора в значительной мере определяется активностью пептидгидролаз – ферментов, участвующих в образовании и/или деградации молекул регуляторных пептидов (20, 40, 71, 193, 209, 212, 218, 241, 256, 262).
Нейропептиды синтезируются в организме в виде неактивных высокомолекулярных предшественников. На заключительных этапах процессинга регуляторных пептидов, приводящих к образованию их активных форм, принимают участие карбоксипептидазо-Б-подобные ферменты, катализирующие отщепление остатков основных аминокислот - аргинина и лизина - с С-конца предшественников биологически активных пептидов (39, 188, 192, 264, 268). Одним из основных ферментов генеза таких нейропептидов как энкефалины, вещество Р, АКТГ, окситоцин, вазопрессин является карбоксипептидаза Н (КПН) (Кф 3.4.17.10) (39, 40, 63, 68, 192, 264). Недавно появились сведения об участии в обмене регуляторных пептидов фермента, активность которого ингибируется фенилметилсульфонил-фторидом - ФМСФ-ингибируемой КП (49, 53). Данный фермент обладает сходной с КПН субстратной специфичностью, что же касается биологической роли фермента, то этот вопрос до сих пор остается открытым. Известно, что уровень активных форм энкефалинов и других нейропептидов в организме контролируется также ангиотензинпревращающим ферментом (АПФ) (Кф 3.4.15.1), участвующим как в процессинге, так и в деградации регуляторных пептидов (66, 180, 183, 196, 209, 259). Однако, несмотря на столь важную роль этих ферментов в организме, многие аспекты проявления их функциональной активности изучены недостаточно. Практически отсутствуют сведения об эндогенных механизмах регуляции активности этих ферментов, а также их свойствах при различных патологических и функциональных состояниях организма.
Одним из видов воздействия, оказывающим влияние на уровень нейропептидов в структурах мозга и периферических тканях и приводящим к экстренному повышению адаптивных способностей организма животного, является острый эмоционально-болевой стресс (ЭБС) (37, 52, 70, 112, 145). Увеличение синтеза и секреции многих регуляторных пептидов при развитии стресс-реакции, наряду с инициацией ряда адаптационных механизмов, приводит к истощению нейрогуморальных и ферментативных систем. В связи с этим, одной из наиболее актуальных задач функциональной биохимии и медицины является поиск путей коррекции изменений, возникающих в функционировании ряда физиологических систем при воздействии острых стресс-факторов. Наиболее благоприятным способом устранения и/или ограничения стресс-нарушений является искусственное повышение активности эндогенных стресс-лимитирующих систем за счет экзогенного введения стресс-протективных веществ пептидной природы, в частности энкефалинов (69, 116, 135). Известно, что выраженным адаптогенным действием обладает предшественник лей-энкефалина – лей5-энкефалин-арг6 (69, 135) Введение извне компонентов стресс-лимитирующих систем способствует не только усилению потенциальных возможностей организма, но и инициации синтеза ряда биологически активных веществ, которые также обладают антистрессорным действием (11, 13, 59, 78, 107, 119, 132).
Одной из основных причин, ограничивающих широкое применение веществ пептидной природы в клинической практике при разного рода стресс-повреждениях, является трудность при прохождении ими гистогематических барьеров (ГГБ), в частности гемато-энцефалического барьера (ГЭБ) (30, 108). Показано, что при периферическом введении веществ модуляторного типа, наблюдается общая закономерность: сами вещества не проходят ГЭБ, в то время как их ближайшие предшественники хорошо проникают через гемато-энцефалический барьер и вызывают соответствующие изменения в функционировании физиологических систем (82). Кроме того, большое значение имеет выбор способа введения исследуемого стресс-протективного вещества. Известно, что одним из наиболее благоприятных способов введения веществ является инстилляция на конъюнктиву глаза (1, 119), поскольку такое введение способствует максимальному проникновению вещества в мозг и практически не травмирует животное.
Введение извне биологически-активных пептидов, их предшественников, а также синтетических аналогов влияет на обмен эндогенных регуляторных пептидов (6, 69, 79, 101, 105, 198), а, следовательно, и на активность ферментов их генеза. Однако механизмы модуляции такого рода биохимических процессов практически не изучены.
В связи с вышесказанным, особый интерес представляет сравнительный анализ изменений активности КПН, ФМСФ-ингибируемой КП и АПФ - ферментов различающихся по своей тканевой локализации и биологической роли, при воздействии острого ЭБС и вещества, корректирующего сдвиги в метаболизме при стрессе – лей5-энкефалин-арг6.
Исходя из вышеизложенного, целью настоящей работы было исследование влияния предшественника лей-энкефалина (лей5-энкефалин-арг6) на активность КПН, ФМСФ-ингибируемой КП и АПФ головного мозга и периферических тканей крыс, подверженных воздействию острого эмоционально-болевого стресса. При выполнении работы были поставлены следующие задачи:
1. Исследование регионального и тканевого распределения активности карбоксипептидазы Н, ФМСФ-ингибируемой КП и АПФ в головном мозге, надпочечниках и семенниках крыс.
2. Исследование влияния острого эмоционально-болевого стресса на активность КПН, ФМСФ-ингибируемой КП и АПФ в головном мозге, надпочечниках и семенниках крыс через различные промежутки времени.
3. Изучение влияния лей-энкефалин-арг на активность КПН, ФМСФ-ингибируемой КП и АПФ головного мозга, надпочечников и семенников крыс в различные сроки после инстилляции.
4. Исследование влияния предшественника лей-энкефалина на активность КПН, ФМСФ-ингибируемой КП и АПФ головного мозга и периферических тканей крыс в динамике острого эмоционально-болевого стресса.
Полученные данные позволят полнее раскрыть роль исследуемых ферментов в механизмах функционирования пептидергических систем при возникновении и развитии стресс-реакции, более детально изучить механизмы регуляции активности ферментов обмена нейропептидов, а также понять роль протеолитических ферментов - КПН, ФМСФ-ингибируемой КП и АПФ в развитии адаптационных реакций организма при остром ЭБС, инициированных введением лей-энкефалин-арг.
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
1.1. ОПИОИДНЫЕ ПЕПТИДЫ И ФИЗИОЛОГО-БИОХИМИЧЕСКИЕ АСПЕКТЫ ИХ ДЕЙСТВИЯ.
Регуляторные пептиды представляют собой полифункциональную группу биологически активных веществ, которым отводится важная роль среди известных природных биорегуляторов (126, 181, 204, 221, 258). К настоящему времени описано и изучено более шестисот биологически активных пептидов (62), действующих в организме в качестве нейромедиаторов, нейромодуляторов и гормонов (62, 126, 134, 221). Они широко представлены в центральной, периферической нервной системе, присутствие регуляторных петидов отмечено также в некоторых биологических жидкостях организма и периферических органах (156, 166, 197, 221).
Важной особенностью действия биологически активных пептидов является способность одних и тех же пептидных молекул вызывать различные как по характеру, так и по месту проявления реакции (62, 174, 184, 204, 271). Кроме того, было доказано, что один пептид может быть фактором регуляции, как частных метаболических реакций организма, так и глобальных форм системного поведения (29, 35, 51, 62, 199). Показано, что нейропептиды принимают участие в регуляции таких процессов, как память, обучение (96, 243), сон (117,131, 200, 217, 254), поведение, регуляция аппетита, жажды, дыхания, сексуальная и локомоторная активность, мышечный тонус (51, 162, 164, 204), ощущение боли (29), стресс-реакции (27, 26, 89, 101, 154, 161, 236) и др.
Современная классификация регуляторных пептидов основана на сочетании функционального, структурного и топологического принципов. В настоящее время выделяют около 40 семейств нейропептидов (12).
Самым многочисленным (свыше 30) и разнообразным по функциям и влияниям в организме является семейство опиоидных пептидов.
Обнаружение в мозге высокоспецифичных рецепторов классических непептидных опиатов - морфина и др. позволило начать целенаправ-ленный поиск их эндогенных лигандов. Первые работы по изучению опиоидных пептидов принадлежат А. Голдстайну, Дж. Хьюсу, Х. Костерлицу, С. Снайдеру, Л. Терениусу (211, 258). В исследованиях Дж. Хьюса и Х. Костерлица в 1975 году впервые из мозга свиньи были выделены и идентифицированы два морфиноподобных кислото-растворимых пентапептида – тир-гли-гли-фен-лей и тир-гли-гли-фен-мет, впоследствии названных лей-и мет-энкефалинами (211).
В экстрактах гипофизов животных было обнаружено присутствие других, более крупных агонистов морфина - b- a- и g- эндорфинов (225, 242, 253). В настоящее время определена структура практически всех эндогенных опиоидных пептидов. Кроме мозга они обнаружены в легких, кишечнике, сердце, печени, почках, поджелудочной железе, мышцах, а также в биологических жидкостях организма: спинномозговой жидкости, крови (157, 166, 197, 219, 221).
Более детальное изучение эффектов, проявляемых опиоидными пептидами, показало ряд значительных отличий в ответах организма на морфин и опиоидные пептиды (95, 133). Полученные данные позволили предположить существование более чем одного класса опиатных рецепторов (95). Сегодня известно 7 основных типов опиатных рецепторов: m-, d-, k-, l-, s-, e-, c- рецепторы (81, 95, 235, 254). Они представляют собой специфичные к опиоидным пептидам регулирующие центры ферментативных комплексов или ионных каналов, локализованных преимущественно на цитоплазматической мембране соответствующих клеток-мишеней (95, 169, 173, 265).
Показано, что, опиоидные пептиды способны оказывать воздействие на нейрональную активность (15, 139, 159, 198), память (96), поведение (51, 168, 199), участвовать в регуляции процессов восприятия боли (29, 86, 216, 266), эндокринных функций организма (93, 235), иммунных реакций (148, 167, 172, 173, 214, 244), стрессовых воздействий (14, 125, 238), сердечно-сосудистой деятельности (35, 115), вовлекаются в развитие и патогенез многих психических и неврологических заболеваний (32, 120, 129,134, 158, 253) и др.
Из большого числа биологических свойств опиоидных пептидов особо следует выделить следующие: действие в весьма низких концентрациях, высокая селективность, отсутствие накопления в организме и низкая токсичность (3, 16). Отмеченные свойства позволяют использовать опиоидные пептиды в комплексе терапевтических воздействий, направленных на повышение потенциальных возможностей организма при различных функциональных состояниях организма.
Одним из факторов, ограничивающих широкое применение этих пептидов в клинической практике, является сложность при прохождении ими гистогематических барьеров (ГГБ) (82, 108). ГГБ рассматриваются как сложная физиолого-гомеостатическая система, которая сохраняет постоянство внутренней среды организма в целом и мозга в частности (30, 108). Известно, что проникновение в мозг большинства исследованных веществ происходит, преимущественно, через стенку кровеносных капилляров (82, 108). Таким образом, проницаемость ГГБ зависит в большей степени от плотности сети капилляров в структурах, на которые непосредственно наносится исследуемое вещество, то есть от способа его введения в организм (108). Известно, что максимальное количество вещества проникает в мозг при внутривенном, внутриартериальном, а также внутрижелудочковом введении, внутримышечное и внутрибрюшинное введение показывают меньший эффект (108). Обнаружено, что достаточно эффективно вещества проникают через гемато-офтальмический барьер (ГОБ) (1, 24, 30).
Особое место в ряду опиоидных пептидов отводится энкефалинам. В отличие от эндорфинов они широко распространены как в мозге, так и в периферических тканях (34, 172, 185, 197, 212). Иммуногистохимическими методами энкефалин-содержащие клетки и их терминали были обнаружены в ядрах среднего мозга, ретикулярной формации, ядрах гипоталамуса, лимбической системе, продолговатом мозге, таламусе, желатинозной субстанции спинного мозга (84, 156, 212). Радиоиммунохимические исследования показали максимальное содержание энкефалинов в бледном шаре и хвостатом ядре, далее в порядке убывания в гипоталамусе, гипофизе, среднем мозге, таламусе, продолговатом мозге, гиппокампе, коре (14, 96, 147, 185). Среди периферических органов высокое содержание энкефалинов отмечено в надпочечниках, где они сосредоточены преимущественно в мозговом слое (34), поджелудочной железе, печени (219), семенниках (197).
Работы первых исследователей были посвящены изучению преимущественно анальгетического действия энкефалинов (165). Обнаружено, что введение опиоидных пептидов вызывает эффект обезболивания или снижения порога болевой чувствительности (75, 86, 165, 228). Анальгетическое действие пептидов реализуется преимущественно через δ-рецепторы гипоталамуса, стриатума и спинного мозга (86, 237, 271).
Достаточно детально исследовалось участие эндогенных энкефалинов и эндорфинов в патогенезе психических и неврологических заболеваний (32, 36, 134). Предполагается, что опиоидые пептиды участвуют в патогенезе шизофрении и депрессии (216). Показано, что при депрессиях отмечается снижение опиоидов в организме, а их системное введение приводит к временному улучшению состояния депрессивных больных (216). Сходство эффектов опиоидных пептидов с действием нейролептиков позволило предположить, что причиной психо-патологических состояний может быть нарушение образования или чрезмерной инактивации этих регуляторных пептидов (114). Многогранная нейротропная активность энкефалинов и эндорфинов дает основание считать, что они могут играть определенную роль в нейрохимических механизмах действия различных нейортропных препаратов, в том числе и антидепрессантов (114, 120). Показанное изменение содержания эндогенных опиоидных пептидов и влияние их экзогенного введения было обнаружено и у больных, предрасположенных к наркомании и алкоголизму (32, 64).
Иммуногистохимическими методами была выявлена высокая концентрация опиоидов в зонах мозга, осуществляющих центральную регуляцию кровообращения (35). Дальнейшие исследования показали участие эндогенных энкефалинов в деятельности сердечно-сосудистой и дыхательной системы (104, 273), в регуляции артериального давления через систему ренин-ангиотензин (87).
Обнаружение опиатных рецепторов d- и k- классов на иммуноцитных мембранах, показало, что энкефалины являются активными регуляторами иммунных реакций (93, 148, 152, 173, 244), осуществляя свое действие посредством активации Т-лимфоцитов мембран (172). Экспери-ментальные работы ряда авторов подтвердили модулирующее действие энкефалинов на защитные механизмы в периферических и, в особенности воспаленных тканях (214).
Присутствие высоких концентраций опиоидных пептидов в гипоталамусе и надпочечниках (34, 156), связанных с реализацией ряда эндокринных функций в организме, позволило предположить участие энкефалинов и эндорфинов в регуляции действия эндокринной системы (15, 159, 176). Показано, что энкефалины и эндорфины влияют на секрецию гормона роста, меланостатина, тириоидного гормона (15, 172). Кроме того, известно, что через опиатные пути осуществляется связь между иммунной и эндокринной системой, что дает возможность диагностировать специфические заболевания, которые имеют в своей основе нейроэндокринные и иммунные расстройства (93).
Данные ряда исследователей указывают на влияние энкефалинов на двигательную активность и поведение крыс (51, 168, 199). Обнаружено, что опиоидные пептиды, вводимые в высокой концентрации внутрь мозга, вызывают состояние тонической неподвижности. Введение этих пептидов в более низких концентрациях влечет за собой менее глубокие изменения локомоторной активности у крыс, и характеризуется первоначальной фазой снижения активности и последующим периодом гиперактивности. Минимальные концентрации опиоидных пептидов вызывают стимулирующий эффект.
Различная локализация по отделам мозга и периферическим тканям лей- и мет-энкефалинов свидетельствует о возможном различии в функциях этих опиоидных пептидов в регионах (62, 242). Использование различных методов введения энкефалинов позволяет полнее представить картину влияния их на физиологические процессы в организме. Так, например, при внутрижелудочковом введении было получено подтверждение того, что мет-энкефалин проявляет более выраженное анальгетическое действие, чем лей-энкефалин (29, 75). Мет-энкефалин также является более действенным иммуностимулятором (214). Наиболее выраженный наркотический и эйфоригенный потенциал напротив свойственен лей-энкефалину, мет-энкефалин практически не проявляет таких свойств (32).
Столь широкий спектр эффектов опиоидных пептидов связан не только с гетерогенностью опиатных рецепторов и разнообразной локализацией их в организме, но и с тем, что опиоидные пептиды могут реализовывать свое действие и посредством функциональных связей с различными биологически активными веществами, в частности, с регуляторными пептидами других семейств (125, 239, 240) и биогенными аминами (31).
Известно, что энкефалины в отличие от эндорфинов быстро разрушаются аминопетидазами – время полужизни энкефалинов в крови крыс при введении их in vivo составляет примерно две минуты (20, 166, 189). Однако согласно данным современных исследований, физиологи-ческое действие короткоживущих пептидов может быть достаточно продолжительным (11, 78, 107, 117). Подобные эффекты описаны для энкефалинов, ПВДС и др (11, 13, 117). Основной из гипотез, объясняющих пролонгированное действие регуляторных пептидов, признана концепция Ашмарина И.П. о регуляторном континууме (11, 13, 78). Предполагается, что экзогенно введенные или эндогенно синтезированные, при каком-либо воздействии, регуляторные пептиды, являются своеобразными индуктора-ми для высвобождения ряда других регуляторных пептидов (11, 13, 78, 107).
Таким образом, экспериментальные данные указывают на то, что опиоидные пептиды могут оказывать разнообразное фармакологическое и физиологическое влияние не только на центральную нервную систему, но и на множество других функциональных систем организма. Подобное воздействие осуществляется как непосредственно - через опиатные рецепторы соответствующих клеток-мишеней, так и путем формирования сложных регуляторных цепей и каскадов образования других регуляторных пептидов.
Степень реализации тех или иных эффектов опиоидных пептидов зависит от уровня активных форм эндогенных пептидов, который определяется активностью ферментных систем обмена нейропептидов, участвующих в образовании и/или деградации молекул регуляторных пептидов (2, 65, 189, 204, 218, 257, 262, 268).
1.2. ОБМЕН РЕГУЛЯТОРНЫХ ПЕПТИДОВ.
1.2.1. Биогенез нейропептидов.
Выделяют два возможных пути образования нейропептидов (55, 89). Один из них нерибосомальный, биосинтез при этом осуществляется с участием специфических ферментов-синтетаз. Другой путь связан с рибосомами, локализованными на мембранах шероховатого эндоплазма-тического ретикулума. В этом случае нейропептиды синтезируются в организме в виде неактивных высокомолекулярных предшественников, которые преобразуются в активную форму в результате ограниченного протеолиза (71, 229, 268). Более детальное изучение молекулярно-биологических характеристик опиоидных пептидов позволило установить некоторые закономерности их образования. Так к настоящему времени показано существование трех высокомолекулярных белковых предшественников, которые являются источниками всех известных опиоидных пептидов: проопиомеланокортин, проэнкефалин и продинорфин (268). Каждый из них закодирован отдельным геном в молекуле ДНК (268).
Для всех нейропептидов характерно наличие ряда общих особенностей в структуре и процессинге препропептидов :
n наличие с N-конца сигнальной последовательности, состоящей из 15-20 остатков гидрофобных аминокислот. Функция ее состоит в обеспечении транслокации синтезируемого пептида через мембраны шероховатого эндоплазматического ретикулума (ЭПР) (71, 268). В полости ЭПР отщепление этой последовательности осуществляется при участии эндоолигопептидазы - сигнальной пептидазы, которая специфична для определенной последовательности гидрофобных аминокислот (268);
n в структуре предшественников, биологически активные пептиды ограничены парами остатков аргинина и лизина, по которым происходит расщепление (71,268), причем расщепление может происходить не по всем парам остатков основных аминокислот. В связи с этим следует предполагать наличие многообразия и высокой специфичности эндопептидаз к участкам расщепления;
n предшественники нейропептидов могут содержать несколько копий различных пептидов. Например, проопиомеланокортин содержит в своей структуре последовательности мет-энкефалина, адренокортикотропина, a-меланотропина, b-липотропина и b-эндорфина, причем в разных отделах один и тот же предшественник может стать источником различных активных пептидов. Это характерно, например, для предшественника энкефалина в мозге и надпочечниках (272).
Эндопептидазы процессинга представляют собой достаточно большую группу ферментов (171, 203, 227, 267). На основе их субстратной специфичности выделяют следующие группы:
1) эндопептидазы специфичные для пар остатков основных аминокислот (сериновые, аспартильные, тиоловые);
2) эндопептидазы, расщепляющие связи при единичных остатках основных аминокислот (тиоловые, металлопептидазы);
3) эндопептидазы, расщепляющие пропептиды не по основным остаткам аминокислот (тиоловые, металлопептидазы );
4) высокомолекулярные мультиферментные протеазы;
Следует отметить, что некоторые из эндопептидаз обладают очень узкой субстратной специфичностью, что важно для генеза структур пептидной природы.
Результатом действия эндопептидаз являются неактивные пептиды, содержащие со стороны С- или N-конца остатки аргинина или лизина, которые затем удаляются экзопептидазами с карбоксипептидаза-Б- и аминопептидаза-Б-подобной активностью (208, 229, 268). Образующиеся в результате биологически активные пептиды, под влиянием какого-либо стимула выбрасываются из клетки либо в кровяное русло, либо в синаптическую щель и мигрируют к клеткам-мишеням, где происходит их связывание со специфическими рецепторами.
По локализации ферменты обмена нейропептидов делят на две большие группы (48):
1. Ферменты секреторных везикул и эндоплазматического ретикулума (карбоксипептидаза Н (Кф 3.4.17.10), аминопептидаза-В-подобный фермент и др). Эти ферменты участвуют в образовании активных форм нейропептидов.
2. Ферменты вневизикулярной локализации – внеклеточной жидкости и внешней поверхности цитоплазматических мембран – ангиотензинпревращающий фермент (Кф 3.4.15.1), карбоксипептидаза N (Кф 3.4.12.7), различные аминопептидазы и др. Роль ферментов вневизикулярной локализации состоит не только в образовании активных форм нейропептидов, то есть процессинге, но и в инактивации нейропептидов.
Таким образом, основную роль в регуляции уровня активных нейропептидов, а, следовательно, и в запуске реакций их биологического действия, играют ферменты конечной стадии процессинга и инактивации (189, 209). Особого внимания в этой связи заслуживают основные КП, поскольку эти ферменты участвуют не только в конечной стадии образования активных пептидов, но и в начальных стадиях их деградации.
Ключевую роль в генезе нейропептидов мозга играет КПН - фермент секреторных везикул, отщепляющий остатки аргинина и лизина с С-конца неактивных пептидов (187, 193, 195, 248). Известно, также, что данный фермент может участвовать в начальных стадиях инактивации активных пептидов, содержащих остатки основных аминокислот с С-конца молекулы (40, 248).
Недавно в лаборатории нейрохимии Пензенского государственного педагогического университета им. В.Г.Белинского в растворимой фракции серого вещества головного мозга кошки была обнаружена новая экзопептидаза, отщепляющая остатки аргинина с С-конца синтетических аналогов энкефалинов (49, 53). Активность этой основной КП полностью ингибировалась фенилметилсульфонилфторидом (ФМСФ), в связи, с чем фермент был назван ФМСФ-ингибируемой КП (49). Особенности тканевого и регионального распределения фермента позволяют отнести ФМСФ-ингибируемую КП, к ферментам, которые наряду с КПН вовлекается в обмен регуляторных пептидов (48, 53).
Известно, что важную роль в обмене таких биологически активных пептидов как энкефалины, ангиотензины, АКТГ, ПВДС, вещество Р и др. играет ангиотензинпревращающий фермент (АПФ), участвующий не только в процессинге, но и в инактивации активных форм пептидов (180, 182, 183). В последнее время особое внимание исследователей обращено на исследование АПФ мозга.
Ниже представлены сведения о физико-химических свойствах этой группы ферментов.
КАРБОКСИПЕПТИДАЗА Н (Кф 3.4.17.10).
Карбоксипептидаза Н (КПН, энкефалинконвертаза, КПЕ) была впервые выделена из хромаффинных гранул надпочечников быка Fricker и Snyder в 1982 году (192, 193). Позднее КПН была обнаружена и выделена из различных органов и тканей (191, 194, 203, 206, 230). При этом было показано, что каталитические и физико-химические свойства КПН из различных источников были достаточно близки.
Фермент является гликопротеином и состоит из одной полипептидной цепи, максимальную активность проявляет при рН 5,6-6,0, что соответствует рН внутри секреторных гранул, Мr50-55кДа (40, 192, 193). Показано также, что КПН является тиолзависимым металлоферментом, в активном центре которого находится Zn2+ (189). Фермент активизируется ионами Co2+ и Ni2+, ингибируются ЭДТА, реагентами на сульфгидрильные группы и органическими кислотами, в состав которых входят амино- или гуанидиновые группы при последнем атоме углерода (GEMSA- гуанидилэтилмеркаптоянтарная кислота, GPSA - гуанидинопропилянтарная кислота, APMSA – аминопропилмеркапто-янтарная кислота и 2 меркапт- 3 гуанидинтиопропановая кислота) (256).
Предложены различные методы определения активности КПН. Наиболее широко применяется метод Fricker и Snyder (194), с использованием дансилированных трипептидов – дансил-фен-ала-арг и дансил-фен-лей-арг – в качестве субстратов. Для определения активности КПН предложены также даларгин (127), лей5-энкефалин-арг6 (127), (3Н)-бензоил-фен-лей-арг (247), (3Н)-бензоил-фен-ала-арг (247). Количественное определение КПН в тканях производится методом связывания (3Н)ГЭМЯК (263).
Согласно первоначальным исследованиям фермент представлен в организме двумя формами - растворимой и мембраносвязанной, которые отличаются по величине Мr (187, 193, 205, 264), значение которой для мембраносвязанной формы выше. Такое отличие связывали с наличием у мембраносвязанной формы С-концевой “якорной” последовательности, состоящей из 15-20 гидрофобных аминокислотных остатков, основное назначение которой состоит в обеспечении рН - зависимой ассоциации КПН с мембранами. Показано также, что активность мембраносвязанной КПН намного меньше активности растворимой формы данного фермента (189, 264). Было выдвинуто предположение, что фермент, связанный с мембранами секреторных гранул, является предшественником растворимой формы КПН и превращается в нее в результате протеолитического расщепления связи c C-конца у основания “якорной” последовательности. Показано, что при этом активность фермента возрастает в 2-3 раза (186). По мнению ряда авторов, такое различие в активностях мембраносвязанной и растворимой форм КПН может быть связано ассоциацией менее активной формы с компонентами мембран (71), что ставит под сомнение гипотезу о зависимости активности мембраносвязанной формы от наличия гидрофобной “якорной” последовательности.
В дальнейшем было обнаружено, что фермент, связанный с мембраной секреторных гранул отличается от растворимой формы не только по величине Мr, но и по локализации. Так в хромаффинных гранулах надпочечников, в мозге, передней и промежуточной доле гипофиза преобладает растворимая форма КПН, а мембраносвязанная форма локализована преимущественно в задней доле гипофиза (37, 40, 186). В связи с этим, было высказано предположение, что описанные формы КПН участвуют в процессинге различных по своей функциональной роли пептидов: растворимая КПН принимает участие преимущественно в образовании секреторных пептидов, в то время как мембраносвязанная форма участвует процессинге пептидов, обладающих местным действием (40, 65).
Тканевая, региональная, клеточная и субклеточная локализация фермента была изучена с применением флюориметрических и радиометрических методов определения активности КПН. Наиболее высокая активность КПН обнаружена в хромаффинных гранулах надпочечников, аденогипофизе и островках Лангерганса поджелудочной железы (191, 194, 203, 206). Более низкая - в задней доле гипофиза, стриатуме, гипоталамусе, гиппокампе, среднем мозге, коре больших полушарий (37, 149, 194). Самая низкая активность КПН отмечена в стволовой части головного мозга, спинном мозге, сердце, легких, желудочно-кишечном тракте, печени и почках (149). Установлено, что фермент локализован в хромаффинных гранулах надпочечников, нейронах мозга, содержащих вещество Р, энкефалины и другие нейропептиды, гормон-продуцирующих клетках гипофиза, a- и b- клетках островков Лангерганса поджелудочной железы, продуцирующих инсулин и глюкагон (189, 192, 194, 248, 256)