Реконструкция электроснабжения зоны подстанции "Рождественское" и "Василево" Шарьинских электрических сетей с обоснованием использования однофазных трансформаторов
Перед энергетикой России, как и перед другими отраслями народного хозяйства, стоит важная задача - обеспечить такой темп роста производства, который в процессе создания материально - технической базы вывел бы Россию на первое место в мире по производству продукции на душу населения.
Важнейшим показателем работы промышленности труда является уровень производительности труда. Производительность труда в свою очередь в значительной степени определяется уровнем энерговооруженности и электровооруженности, которые за последние годы значительно выросли. Решением правительства России была разработана энергетическая программа на длительную перспективу. Ее основные положения, в частности, предусматривают:
- ускорение технического прогресса в отраслях топливно-энергетического комплекса;
- обеспечение опережающих темпов роста производства электроэнергии по сравнению с темпами роста добычи и производства первичных энергоресурсов;
- обеспечение стабильного высокого уровня добычи первичных энергоресурсов;
- форсирование развития ядерной энергетики;
- повышение надежности топливо- и энергоснабжения путем создания необходимых резервов производственных мощностей в отраслях топливно-энергетического комплекса.
С целью повышения надежности электроснабжения потребителей и получения определенного народнохозяйственного экономического эффекта электростанции объединяются на параллельную работу в районные энергосистемы, которые в свою очередь при развитии объединяются в объединенные энергосистемы. Объединение электростанций в энергосистемы дает ряд преимуществ:
- повышается надежность электроснабжения потребителей;
- уменьшается требуемый резерв в энергосистеме;
- улучшается условия загрузки агрегатов благодаря выравниванию графика нагрузки и снижению максимума нагрузки энергосистемы;
- появляется возможность более полного использования генерирующих мощностей электростанций;
- улучшаются технико-экономические показатели энергетики из-за возможности использования более мощных и экономичных агрегатов;
- улучшаются условия эксплуатации энергохозяйства;
- создаются условия для оптимального управления развитием и режимами работы энергетики в целом как подсистемы народного хозяйства страны, для создания автоматизированной системы (АДСУ), а также для создания автоматизированной системы управления энергетикой как отраслью народного хозяйства.
Электрификация, то есть производство, распределение и применение электроэнергии во всех отраслях народного хозяйства и быта населения, ─ один из важных факторов технического прогресса.
На базе электрификации стала развиваться промышленность, электроэнергия начала проникать в сельское хозяйство и транспорт. Весь опыт развития электрификации показал что, надежное, высококачественное и дешевое электроснабжение можно получить только от крупных районных электростанций, объединенных между собой в мощные энергетические системы. На крупных электростанциях районного масштаба с линиями электропередачи большого радиуса действия вырабатывается наиболее дешевая электроэнергия, прежде всего из-за высокой концентрации ее производства, а также благодаря возможности размещать электростанции непосредственно у дешевых источников электроэнергии ─ угля, сланцев, на больших реках.
Электроснабжение производственных предприятий и населенных пунктов в сельской местности имеет свои особенности по сравнению с электроснабжением промышленности и городов. Главная из них ─ это необходимость подводить электроэнергию к огромному числу сравнительно маломощных объектов, рассредоточенных по всей территории страны. В результате протяженность сетей (в расчете на единицу мощности потребителя) во много раз превышает эту величину в других отраслях народного хозяйства, а стоимость электроснабжения в сельском хозяйстве составляет до 75% общей стоимости электрификации, включая затраты на приобретение рабочих машин.
Сказанное выше наглядно показывает, какое большое значение имеет проблема электроснабжения сельского хозяйства. От ее рационального решения в значительной степени зависит экономическая эффективность применения электроэнергии в сельском хозяйстве и быту сельского населения. Поэтому первостепенная задача правильного электроснабжения заключается в доведении стоимости электроэнергии до минимальной. Этого следует добиваться при соблюдении всех правил, требований и норм и прежде всего необходимого качества электроэнергии то есть постоянства частоты и напряжения, а также надежности ее подачи.
1. ТЕХНИЧЕСКИЕ УСЛОВИЯ РАЙОНА ПРОЕКТИРОВАНИЯ
При проектировании рассмотрены вопросы реконструкции подстанции “Рождественское” 35/10. Подстанция находится в поселке Рождественское Костромской области Шарьинского района, предназначена для снабжения электрической энергией сельских потребителей.
Шарьинский район находится в зоне дерново-подзолистых почв. Исходными породами для образования почв послужили породы ледникового периода. По механическому составу почвы представлены песчаными, супесчаными, суглинистыми разновидностями.
Дерново-подзолистые почвы характеризуются непрочной структурой.
Более сложным природным фактором является климат. Он изучается по элементам: осадки, температура, ветры.
Климат Шарьинского района умеренно-континентальный: лето сравнительно короткое, умеренно теплое, зима продолжительная, умеренно холодная и достаточно снежная. Самым холодным месяцем является январь, а самым теплым июль. Преобладающим направлением ветра зимой является юго-западное и южное; весной - юго-западное и северо-западное; летом западное; осенью юго-западное.
Краткая характеристика района расположения подстанции:
1. Сейсмичность пункта (в баллах по ГОСТ 6249-52) – ниже 6 баллов.
2. Среднегодовое количество осадков – 568 мм.
3. Среднегодовая продолжительность безморозного периода – 185 дней.
4. Средняя высота снежного покрова – 57 мм.
Нормативный скоростной напор ветра на высоте 10 м над поверхностью земли с повторяемостью 1 раз в 10 лет – 40 .
1. Толщина стенки гололеда на высоте 10 м над поверхностью земли с повторяемостью 1 раз в 10 лет – для первого района по гололеду- 15 мм.
2. Нормативная глубина промерзания грунта – 1,7 м.
3. Среднегодовое число грозовых дней – 19 дней продолжительностью 43 часа в год.
Окружающая атмосфера не загрязнена, концентрация пыли в окружающей среде – 10 .
1. Температура наружного воздуха:
средняя наиболее холодной пятидневки – 35.
максимальная – +32.
минимальная – - 49.
гололеде – -7.
1. Основанием фундаментов служат насыпные супесчаные грунты подстилаемые суглинками. Грунтовые воды скрыты на глубине 5 м. В весенний период возможен подъем на 1 м по сравнению с замеренным. Грунтовые воды агрессивными свойствами не обладают.
2. ОБОСНОВАНИЕ НАГРУЗОК НА СТОРОНАХ 35/10 кВ
В качестве исходных материалов используются данные диспетчерской службы, службы подстанций, службы релейной защиты – Электрические сети ОАО “Костромаэнерго”.
Исходные данные заданы:
а). В виде значений полных мощностей на сторонах 10, 35 кВ; токов на этих же сторонах и на каждом из фидеров 10 кВ. Эти данные приведены в ведомостях режимных дней для двух случаев: режимный день максимальной нагрузки 20 декабря 2006 года и режимный день минимальной нагрузки 20 июня 2006 года (табл. приложения 1 и 2).
б). В виде однолинейной схемы подстанции “Рождественское” с обозначением существующего оборудования.
Обработка информации режимных дней производится с помощью математического пакета “Mathcad” с последующим построением соответствующих графиков нагрузки трансформаторов (на сторонах 10, 35кВ) и графиков нагрузки подстанции в целом.
По данным планового отдела Электрические сети ОАО “Костромаэнерго”, район, питающийся от подстанции “Рождественское”, находится в экономическом кризисе. В районе не развивается производство, подстанция питает только сельских потребителей, нагрузка на подстанции очень маленькая (таблицы приложений 1,2), трансформаторы работают с существенным недогрузом. Рост нагрузки прогнозируется 2% в год.
3. ПОСТРОЕНИЕ ГРАФИКОВ НАГРУЗКИ ПО РЕЖИМНЫМ ДНЯМ И ВЫБОР МОЩНОСТИ ТРАНСФОРМАТОРОВ
Согласно графикам нагрузки необходимость уменьшения мощности трансформаторной подстанции “Рождественское” обусловлена снижением нагрузки. Уменьшение нагрузки вызвано прекращением работ сельских хозяйств (которые питает данная подстанция), снижением нагрузки сельских потребителей (уменьшение численности населения).
Данные существующей нагрузки в зимний и летний периоды представлены в приложении: таблицы 1,2,3 и таблица 4; по данным которых, строится график существующей нагрузки подстанции. Эти данные получены при проведении мероприятий контроля нагрузки в режимные дни, которые для определения значений нагрузки в зимний период были выполнены 20 декабря 2006 года (табл. 1 и 2 приложения), а для значений в летний период 20 июня 2006 года (табл. 3 и 4 приложения).
Построим графики нагрузки в зимний период для трансформатора Т1 (S1=1,6 МВА) и Т2 (S2=1,6 МВА). Для этого из таблицы 1 приложения строим графики нагрузок для стороны 10 кВ (рис.1.1.).
Рис.1.1. Графики нагрузки трансформатора Т1 и Т2 в зимний режимный день для стороны 10 кВ.
И из таблицы 2 приложения строим графики нагрузок для стороны 35 кВ в зимний режимный день (рис.1.2.).
Рис.1.2. График нагрузки трансформаторов Т1 и Т2 в зимний режимный день для стороны 35 кВ.
Для летнего режимного дня графики строятся аналогично, поэтому сразу приведем график суммарной (существующей ) нагрузки первого и второго трансформатора для зимнего и летнего режимного дней (рис.1.3.).
Рис.1.3. График существующей нагрузки подстанции за зимний и летний период на стороне 35 кВ.
Из графика существующей нагрузки можно сделать вывод, что два трансформатора мощностью 1,6 МВА, установленных на подстанции, обеспечивают необходимый уровень электроснабжения.
Перспектива нагрузки в системе по “Костромаэнерго”, составляет 2% в год.
Строим график перспективной нагрузки за летний и зимний периоды (рис1.4.) Эти данные получены с учетом 10% увеличения фактической нагрузки в перспективе ее роста за пять лет.
Рис.1.4. График перспективной () нагрузки подстанции в летний и зимний период.
Из графика нагрузки по значениям перспективной нагрузки можно сделать вывод, что два трансформатора мощностью 1,6 МВА способны обеспечить потребителя необходимым уровнем электроснабжения. Из графика нагрузки суммарной мощности трансформаторов в зимний период можно сделать следующий вывод: установленные на подстанции трансформаторы большей мощности, чем необходимо (суммарная мощность трансформаторов равна 3,2 МВА, а наибольшая мощность нагрузки 0,16 МВА). На основании этого заключения принимаем решение о замене трансформаторов на подстанции “ Роджественское ” на менее мощные. Из (11) выбираем трансформатор для класса напряжения 35 кВ. Для этого класса напряжения наименьший трансформатор 0,56 МВА. Мощность этого трансформатора также выше, чем необходимо, но так как на класс напряжения 35 кВ трансформаторов с меньшей мощностью нет, а вопроса перевода сетей подстанции на пониженное напряжение (10 кВ) техническое задание на проектирование не предусматривает, то намечаем к установке трехобмоточные трансформаторы марки ТМ 560/35: Sн.тр = 560 кВА
Uв = 35 кВ Uн = 10 кВ
Uк % в-н = 6,5
Pхх = 3,35 кВт Pкз =9,4 кВт
Необходимость установки на подстанции двух трансформаторов продиктована ПУЭ из-за наличия потребителей 1 категории (9).
Так как максимальное значение нагрузка достигает в зимний период, то дальнейшие расчеты и обоснования будем производить относительно значения перспективной нагрузки в зимний период.
4. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ СРАВНЕНИЕ ВАРИАНТОВ ТРАНСФОРМАТОРОВ
В данном разделе выполняется сравнение вариантов на основе технических и технико-экономических показателей. Рассматриваем два варианта выбора трансформаторов: существующий и проектный.
Существующий вариант представлен установленными на подстанции в настоящее время двумя двухобмоточными трансформаторами ТМН – 1600/35, мощностью 1600 кВА.
Uв = 35 кВ;
Uн = 10 Кв;
Pхх = 2,9кВт;
Pкз =16,5 кВт.
Проектный вариант представлен установкой, в связи с уменьшением роста нагрузки, на подстанции двух двухобмоточных трансформаторов ТМ – 560/35 мощностью 560 кВА
Uв = 35 кВ;
Uн = 10 кВ;
Pхх = 3,35кВт;
Pкз =9,4 кВт.
4.1 Проверка трансформаторов на систематическую и аварийную перегрузку
Техническое сравнение вариантов производим на основе сопоставления сравниваемых вариантов по графику перспективного роста нагрузки представленного на рисунке 1.4.
Проверка на систематическую перегрузку производится следующим образом: на заданном графике нагрузки наносится прямая, соответствующая номинальной мощности подстанции. Верхняя часть графика, отсекаемая указанной прямой, является зоной перегрузки. Если график нагрузки расположен ниже прямой, то систематическая перегрузка отсутствует (12).
При параллельно работающих трансформаторах (в нормальном режиме работы), в перспективной нагрузке мощность подстанции составляет 1,12 МВА при существующем варианте (мощность одного трансформатора 1,6 МВА). Максимальное значение перспективной нагрузки (рис.1.4.) составляет 1,915 МВА. Таким образом, силовые трансформаторы не перегружаются при существующем варианте (S=1,6МВА). Так как график нагрузки целиком расположен ниже номинальной мощности трансформаторов, то систематическая перегрузка отсутствует, а следовательно нет необходимости в проверке трансформаторов на этот режим работы.
При замене на подстанции трансформаторов на мощность 0,56 МВА мощность всей подстанции составит 1,12 МВА. Максимальное значение перспективной нагрузки (рис.1.4.) составляет 0,16 МВА. Таким образом, силовые трансформаторы не перегружаются и при трансформаторах с мощностью 0,56 МВА. Так как график нагрузки целиком расположен ниже номинальной мощности трансформаторов, то систематическая перегрузка отсутствует, следовательно нет необходимости в проверке трансформаторов на этот режим работы.
Рассмотрим работу трансформаторов в аварийном режиме.
Проверка трансформаторов на аварийную перегрузку производится следующим образом: на заданном графике нагрузки наносится прямая, соответствующая номинальной мощности трансформатора. Верхняя часть графика, отсекаемая этой прямой, является зоной перегрузки трансформатора. Если график нагрузки расположен ниже, то аварийная перегрузка отсутствует (12).
Из графика нагрузки, представленного на рисунке 1.4., максимальное значение нагрузки составляет 0,16 МВА. При мощности трансформатора 1,6 МВА график нагрузки целиком расположен ниже номинальной мощности трансформатора, следовательно аварийная перегрузка отсутствует, нет необходимости в проверке трансформатора на этот режим.
При мощности трансформатора 0,56 МВА график нагрузки так же целиком расположен ниже номинальной мощности трансформатора, следовательно аварийная перегрузка отсутствует и нет необходимости в проверке трансформатора на этот режим.
4.2 Выбор трансформаторов на основе технико- экономического сравнения вариантов
Экономическим критерием по которому определяют наилучший вариант является минимум расчетных затрат.
руб. (4.1)
где: Pн = 0.12 , нормативный коэффициент эффективности капитальных вложений (5);
К - суммарные капитальные вложения, руб.;
И - ежегодные эксплуатационные издержки, руб.;
У - стоимость недоотпущеной энергии, руб.;
К=a*Kзав, (4.2)
где: Kзав - заводская стоимость трансформатора, руб.;
а = 1.7 - коэффициент для пересчета от заводской стоимости к расчетной стоимости трансформатора (5);
(4.3)
где:
а = 8.8% - отчисления на амортизацию, техническое обслуживание и ремонт (5);
Ипот - стоимость ежегодно потерянной электроэнергии трансформаторов, руб;
Ипот = Сст*DЭст + См *DЭм; (4.4)
где: Сст - стоимость потерь электроэнергии в магнитопроводе, 0.01руб/кВт*ч (5);
См-стоимость потерь электроэнергии в обмотках трансформатора, 0.012 руб/кВт*ч (5)
DЭст - количество потерянной электроэнергии в магнитопроводе,кВт;
DЭм - количество потерянной электроэнергии в обмотках трансформатора, кВт.
DЭст = 8760*n*DРх.х, (4.5)
где: n- количество параллельно работающих трансформаторов;
DРх.х - потери в трансформаторе при холостом ходе, кВт,
(4.6)
где: Pк - потери в трансформаторе при коротком замыкании, кВт;
Si-мощность нагрузки на каждой ступени, МВА (см. рис.1.5.);
Sн - номинальная мощность трансформатора, МВА;
ti - время данного участка , ч (рис.1.5.) .
У = Энед*У0 , (4.7)
где: Энед- количество недоотпущенной электроэнергии, кВт*ч;
У0- стоимость одного кВА*ч недоотпущенной электроэнергии, руб/кВА*ч.
Количество недоотпущенной электроэнергии определяем по формуле.
, (4.8)
где: Fэ - количество недоотпущенной энергии за сутки при отключении одного трансформатора, кВт;
- параметр потока отказов , 1/год;
Тв - среднее время восстановления после отказа, ч.
Количество недоотпущенной за сутки энергии определяем по формуле.
FЭ = cosf*(Si-Sпер.), (4.9)
где: cosf - коэффициент мощности.
После окончания всех расчетов, проводим сравнение двух вариантов по формуле:
(4.10)
если ДЗ>5% , то принимаем вариант с минимальными расчетными затратами;
если ДЗ<5% , то варианты равноэкономичные.
3.2.1 Расчёт исходного варианта с трансформаторами Sном= 10 МВА.
Количество потерянной электроэнергии в обмотке высшего напряжения трансформатора по (4.6).
ДЭм110 = 0.5*365*0,076*37,92 / 102 = 190,9 МВт*ч
Количество потерянной электроэнергии в магнитопроводе по (4.5).
ДЭст = 8760*2*0,023 = 402,9 МВт*ч
Стоимость ежегодно потерянной электроэнергии трансформаторов по (4.4).
Ипот = 0.01*402,9+0.012*190,9 = 6,319 тыс.руб.
Ежегодные эксплуатационные издержки по (4.3).
И = 0.088*640000*1.7+6319 = 102,063 тыс.руб.
Так как трансформатор не перегружается количество недоотпущенной электроэнергии за сутки равно нулю.
Fэ = 0
Следовательно количество недоотпущенной электроэнергии за год так же равно нулю.
Эн = 0
Стоимость недоотпущенной электроэнергии за год не учитываем, т.к. Эн=0.
Минимум расчетных затрат по исходному варианту по (4.1).
З = 0.12*640000*1.7+102063 = 232,623 тыс.руб.
Данные расчета сводим в табл. 4.1.
3.2.2 Расчет проектируемого варианта с трансформаторами
Sном = 6,3 МВА
Количество потерянной электроэнергии в обмотке высшего напряжения трансформатора по (4.6).
ДЭм110 = 0.5*365*0.058*37,092 / 6,32 = 367,07 МВт*ч
Количество потерянной электроэнергии в магнитопроводе по (4.5).
ДЭст = 8760*2*0.017 = 297,8 МВт*ч
Стоимость ежегодно потерянной электроэнергии трансформаторов по (4.4).
Ипот = 0.01*297800+0.012*367070 = 7,382 тыс.руб.
Ежегодные эксплуатационные издержки по (4.3).
И = 0.088*550000*1.7+7382 = 89,662 тыс.руб.
Количество недоотпущенной электроэнергии за сутки равно нулю, т.к. трансформатор не перегружается.
Fэ = 0 МВт
Следовательно количество недоотпущенной электроэнергии за год так же равно нулю.
Эн = 0 МВт
Стоимость недоотпущенной электроэнергии за год не учитываем, т.к. Эн=0.
Минимум расчетных затрат по проектному варианту по (4.1).
З = 0.12*550000*1.7+89662 = 201,862 тыс.руб.
Данные расчета сводим в табл. 4.1.
Годовой экономический эффект составит:
(4.12)
(руб)
Таблица 4. 1.
Сводная таблица расчетных параметров.
Параметр | Исходный вариант | Проектный вариант |
Капитальные вложения, руб. | 640000 | 550000 |
Стоимость ежегодно потерянной эл.эн., руб. | 6319 | 7382 |
Эксплуатационные издержки, руб. | 102063 | 89662 |
Расчетные затраты, руб. | 232623 | 201862 |
Годовой экономический эффект, руб. | 30761 |
Подобные работы: