Проектирование транзитной тяговой подстанции для питания системы тяги 2 х 27,5 кВ

До 1956 года электрификация железных дорог проводилась на постоянном токе напряжением 3 кВ. В настоящее время она осуществляется как на постоянном, так и на переменном токе промышленной частоты напряжением 27,5 кВ и 2 х 27,5 кВ.

Применение переменного тока для электрической тяги более экономично по сравнению с постоянным током, как по капитальным вложениям, так и по эксплуатационным расходам. При напряжении 25 кВ среднее расстояние между тяговыми подстанциями составляет 50 км вместо 20 км при напряжении 3 кВ постоянного тока, что уменьшает примерно в 2 раза общее количество дорогостоящих тяговых подстанций для одного и того же электрифицированного участка.

Кроме того, при потреблении электроподвижным составом одной и той же мощности потери энергии в контактной сети при напряжении 27,5 кВ во много раз меньше, чем при напряжении 3 кВ, что позволяет выполнить контактную подвеску проводами меньшего сечения.

В данном курсовом проекте я рассматриваю систему тяги переменного тока 2 х 27,5 кВ, которая позволяет увеличить среднее расстояние между тяговыми подстанциями до 100 км.

Электрическая тяга является основным потребителем электроэнергии на железнодорожном транспорте. Кроме того, электроэнергия на железных дорогах расходуется на различные технические нужды: освещение вокзалов и станций, выполнение работ по ремонту подвижного состава, пути, изготовление запасных частей и т.д. Удовлетворение потребности железнодорожного транспорта в электроэнергии осуществляется в основном путём присоединения железнодорожных электроустановок к районным сетям энергосистемы.

Тяговые подстанции это сложные и мощные электроустановки, требующие от персонала глубоких знаний устройства электроустановок, электрооборудования, схем и аппаратуры управления, а также знаний по технике безопасности при проведении всех работ на тяговых подстанциях.

Проектирование тяговой подстанции выполняется с учетом действующих правил и норм на основании имеющегося опыта эксплуатации и имеющихся достижений науки и технике в области электрифицированного железнодорожного транспорта.

Целью курсового проекта являются обобщения и углубления студентами знаний по дисциплине, изучение современных проблем проектирования.

Грамотно эксплуатировать оборудование тяговой подстанции, уметь наблюдать и анализировать происходящие в нем процессы, при необходимости наметить пути усовершенствования отдельных узлов и иметь уверенность в том, что их осуществление возможно только после тщательного целенаправленного изучения принципа действия и устройства всего того единого целого, что объясняется названием тяговая подстанция.


Реферат

В данном курсовом проекте произвели выбор типов понижающих трансформаторов для питания тяговых, районных и нетяговых железнодорожных потребителей. Разрабатывается схема главных электрических соединений тяговой подстанции системы тяги соответствующей варианту задания. Рассчитываются токи коротких замыканий на шинах тяговой подстанции. С учётом рассчитанных токов коротких замыканий производится выбор и проверка аппаратуры, токоведущих частей и изоляторов, применяемых на данной тяговой подстанции. Производится выбор ТСН и аккумуляторной батареи. Рассчитываются заземляющие устройства. Производится расчёт технико-экономических показателей тяговой подстанции. Разрабатывается план и разрезы подстанции.


Исходные данные

Схема внешнего электроснабжения.

Рис.1. Двухцепная ЛЭП – 110 кВ.

Тяговая подстанция №4.

Род тока – переменный.

Характеристика источников питания.

ИП 1; МВ×А;  МВ×А;

ИП 2: МВ×А; МВ×А;

5. Данные по подстанции.

Понижающий тяговый трансформатор ОРДТНЖ-25000/110:

МВ×А;

 кВ;

 кВ

Количество трансформаторов – 3;

Понижающий районный трансформатор ТДН-16000/110/10:

МВ×А;

 кВ;

 кВ;

 кВ×А;

Количество трансформаторов – 2;

Количество фидеров – 5;

;

6. Длины участков ЛЭП.

l1 =79 км;

l2 =72 км;

l3 =75 км;

l4 =70 км;

l5 =72 км;

l6 =79 км;

7. Характеристика потребителей собственных нужд.

Таблица 1.

Наименование потребителякикмР, кВт
Рабочее освещение 0.7 1.0 24
Аварийное освещение 1.0 1.0 2.4
Моторные нагрузки 0.75 0.8 35
Печи отопления и калориферы 0.65 1.0 23
Потребители СЦБ 0.75 0.8 42
Зарядно-подзарядный агрегат 0.7 1.0 9.3
Цепи управления, защиты и сигнализации 0.7 1.0 2.3

8. Данные для расчёта заземляющих устройств.

Сопротивление верхнего слоя земли: Ом×м;

Сопротивление нижнего слоя земли: Ом×м;

Толщина верхнего слоя земли: м;

Время протекания - 0.4 с;

9. Выдержка времени релейной защиты.

Вводы 110 кВ – 2.0 с;

Вводы 10 кВ – 1.0 с;

Вводы 2х27.5 кВ – 1.0 с;

Фидер 2х27.5 кВ – 0.5 с;

Фидер 10 кВ – 0.5 с;


Глава 1. Однолинейная схема главных электрических соединений

1.1 Структурная схема тяговой подстанции

1.2 Выбор типа силового трансформатора

Согласно исходным данным выбираем трансформатор типа: ОРДНЖ-25000/110–76 У1

Технические характеристики трансформатора ОРДНЖ-25000/110–76 У1


Таблица 2.

Тип трансформатораSн, кВАНоминальное напряжение обмоток , кВПотери, кВтuК, %IХ, %
ВНННРХВН- ННВН-НН1ВН-НН2НН1-НН2
ОРДНЖ-25000/110–76 У12500011027,5-27,5278411,011,015,00,5

1.3 Выбор типа районного трансформатора

Согласно исходным данным выбираем трансформатор типа: ТДН-16000/110–66

Технические характеристики трансформатора ТДН-16000/110–66

Таблица 3.

Тип трансформатораSн, кВАНоминальное напряжение обмоток , кВПотери, кВтuК, %IХ, %
ВНННРХРК
ТДН-16000/110–661600011511268510,50,85

1.4 Разработка однолинейной схемы тяговой подстанции

Согласно ПУЭ электрифицированные железных дороги относится к потребителям первой категории, для которых перерыв в электроснабжении не допускается, поэтому схемы электроснабжения выполняют таким образом, что при повреждении или ремонте любого элемента обеспечивалось непрерывное питание ЭПС.

Конфигурация и основные особенности схемы внешнего электроснабжения тяговых подстанций зависят от значения питающего напряжения и надежности элементов системы, в частности ЛЭП и коммутационных аппаратов.

Однолинейная схема определяет состав необходимого высоковольтного оборудования, а дальнейшие расчеты позволяют выбрать тип оборудования.

Проектируемая транзитная подстанция переменного тока имеет три распределительных устройства напряжением 110, 2х27,5 и 10 кВ.

ОРУ-110 кВ выполнено по схеме два ввода с двумя перемычками: рабочей перемычкой содержащей выключатель и ремонтной перемычкой без выключателя, а также имеется дополнительная перемычка для подключения дополнительного трансформатора.

ОРУ-2х27.5 кВ выполнено по схеме одна трёхфазная рабочая система сборных шин секционированная разъединителями и одна обходная система сборных шин.

РУ-10 кВ выполнено по схеме одна рабочая система сборных шин, секционированная выключателем.

1.5 Описание назначения основных элементов схемы тяговой подстанции

К основным элементам тяговой подстанции относятся:

Силовые трансформаторы предназначены для преобразования электрической энергии по уровню напряжения. Для компенсации колебания напряжения в питающей сети, трансформаторы оборудуют устройством для регулирования напряжения под нагрузкой.

Высоковольтные выключатели переменного тока – предназначены для включения и отключения высоковольтных цепей переменного тока в нормальном и аварийном режимах работы.

Разъединители – аппараты, применяемые в электроустановках выше 1000 В и предназначенные для коммутации предварительно обесточенных электрических цепей, а также для создания видимого разрыва цепи, обеспечивающего безопасность работы персонала.

Трансформаторы тока – предназначены для преобразования электрической энергии по уровню тока с целью уменьшения первичного тока до значений наиболее удобных для питания измерительных приборов и реле, а также для отделения цепей измерения и защиты от первичных цепей высокого напряжения.

Трансформаторы напряжения – предназначены для преобразования электрической энергии по уровню напряжения с целью понижения первичного напряжения до величины, удобной для питания приборов и реле, а также для изоляции цепей обмоток вольтметров, счётчиков, реле и других приборов от сети первичного напряжения.

Ограничители перенапряжений – предназначены для защиты изоляции электрических цепей, электрооборудования и аппаратуры от атмосферных и коммутационных перенапряжений.

Токоведущие части – неизолированные и изолированные проводники, предназначенные для соединения источников с приёмниками энергии через различные переключающие аппараты.

Изоляторы – электротехнические устройства предназначенные для электрической изоляции и механического крепления электроустановок или их отдельных частей, находящихся под разными электрическими потенциалами.

ТСН – предназначены для преобразования электрической энергии по уровню напряжения до значения 380/220 В и для питания собственных нужд тяговой подстанции.

1.6 Расчёт максимальных рабочих токов основных присоединений

Максимальный рабочий ток вводов и перемычки тяговой подстанции определим, используя выражение:


где  коэффициент перспективы, равный 1.3;

- коэффициент транзита, равный 1.7

nт – число понижающих трансформаторов;

nт – число понижающих районных трансформаторов;

- номинальная мощность трансформатора, В×А;

- номинальное входное напряжение тяговой подстанции, В;

Максимальный рабочий ток обмотки высокого напряжения тягового трансформатора определим по формуле:

где: - коэффициент перегрузки трансформатора, равный 1,5;

- номинальное напряжение стороны высокого напряжения.

Максимальный рабочий ток обмотки низкого напряжения тягового трансформатора определим, используя выражение:

где:  - номинальное напряжение стороны среднего напряжения, В;

Сборные шины низкого напряжения (2х27,5 кВ):

где: - коэффициент распределения нагрузки на шинах вторичного напряжения, равный 0,7.

Максимальный рабочий ток обмотки высокого напряжения районного трансформатора определим по формуле:

где: - коэффициент перегрузки трансформатора, равный 1.5;

- номинальное напряжение стороны высокого напряжения.

Обмотка низкого напряжения районного трансформатора:


где:  - номинальное напряжение стороны низкого напряжения, В;

Сборные шины низкого напряжения районных потребителей (10 кВ):

Максимальные рабочие токи фидеров районных потребителей определим по формуле:

где - коэффициент перспективы, равный 1,3;

- полная мощность районного потребителя, В×А;

- номинальное напряжение районного потребителя , В;

Ток фидера районного потребителя

Ток фидера контактной сети (2х27,5) принимаем: А.


1.7 Выбор аппаратуры и токоведущих частей подстанции

Для обеспечения надёжной работы аппаратуры и токоведущих частей электроустановки необходимо правильно выбрать их по условиям длительной работы в нормальном режиме и кратковременной работы в режиме короткого замыкания.

Выбор аппаратуры и токоведущих частей выполняется по номинальному току и напряжению: Uуст £ Uн ; Iраб.max £ Iн ,

где Uуст – номинальное напряжение установки;

Uн – номинальное напряжение аппарата;

Iраб.max – максимальный рабочий ток присоединения, где установлен аппарат;

Iн – номинальный ток аппарата.

Выбор шин и токоведущих частей.

Вводы и перемычка ТП (110 кВ):

Iраб max = 1168,14 А;

Выбираем провод АС - 700Iдоп = 1180 А

Вводы ВН понижающего тягового трансформатора(110 кВ):

Iраб max = 340,91 А;

Выбираем провод АС - 120Iдоп = 390 А

Вводы НН понижающего тягового трансформатора(2х27,5 кВ):

Iраб max = 681,82 А;

Выбираем провод АС - 330Iдоп = 730 А

Вводы ВН районного понижающего трансформатора(110 кВ):

Iраб max = 125,97 А;

Выбираем провод АС - 270Iдоп = 265 А

Вводы НН районного понижающего трансформатора(10 кВ):

Iраб max = 1385,64 А;

Выбираем шину А-100´8Iдоп = 1625 А

Сборные шины низкого напряжения (2х27,5 кВ):

Iраб max = 954,55 А;

Выбираем провод АС - 500Iдоп = 960 А

Сборные шины низкого напряжения (10 кВ):

Iраб max = 1293,26 А;

Выбираем шинуА-60´8Iдоп = 1320 А

Фидеры районных потребителей (10 кВ):

Iраб max = 112,58 А;

Выбираем шинуА-20´3Iдоп = 275 А

Фидеры контактной сети (2х27,5 кВ)

Iраб max = 400 А;

Выбираем провод АС – 150Iдоп = 450 А

Выбор изоляторов.

РУ-110 кВ: ЛК-120/110;

РУ-2х27,5 кВ: ЛК-120/35;

РУ-10 кВ: ИО-10-3,75У3, ИП-10/1600-750У

Выбор выключателей.

РУ-110 кВ:

Перемычка ТП:Iраб max = 1168,14 А;

РМ-121-20/1200 Iном = 1200 А;Uном = 110 кВ;

Вводы ВН тягового трансформатора:Iраб max = 340,91 А;

РМ-121-20/1200 Iном = 1200 А;;Uном = 110 кВ;

Вводы ВН районного трансформатора:Iраб max = 125,97 А;

РМ-121-20/1200 Iном = 1200 А;Uном = 110 кВ;

РУ-2х27,5 кВ:

Вводы НН понижающего трансформатора:Iраб max = 681,82 А;

ВГБЭ-35- 12,5/1000Iном = 1000 А;Uном = 35 кВ;

Обходной выключатель: Iраб max = 954,55 А;

ВГБЭ-35- 12,5/1000Iном = 1000 А;Uном = 35 кВ;

Фидеры контактной сети:Iраб max = 400 А;

ВГБЭ-35- 12,5/630Iном = 630 А;Uном = 35 кВ;

Фидеры ДПР:

ВГБЭ-35- 12,5/630Iном = 630 А;Uном = 35 кВ;

Вводы ТСН:

ВГБЭ-35- 12,5/630Iном = 630 А;Uном = 35 кВ;

РУ-10 кВ:

Вводы НН понижающего трансформатора:Iраб max = 1385,64 А;

ВВ/TEL-10-20/1600Iном = 1600 А;Uном = 10 кВ;

Фидеры районных потребителей:Iраб max = 112,58 А;

ВВ/TEL-10-12,5/630Iном = 630 А;Uном = 10 кВ;

Секционный выключатель: Iраб max = 1293,26 А;

ВВ/TEL-10-20/1600Iном = 1600 А;Uном = 10 кВ;

Выбор разъединителей.

РУ-110кВ

Вводы и перемычка ТП (110 кВ): Iраб max = 1168,14 А;

РГ-110-2000 Iном = 2000 А; Uном = 110 кВ;

Вводы ВН тягового трансформатора:Iраб max = 340,91 А;

РГ-110-1000 Iном = 1000 А; Uном = 110 кВ;

Вводы ВН районного трансформатора:Iраб max = 125,97 А;

РГ-110-1000 Iном = 1000 А; Uном = 110 кВ;

РУ-2х27,5 кВ:

Вводы НН понижающего трансформатора:Iраб max = 681,82 А;

РГ-35-1000Iном = 1000 А; Uном = 35 кВ;

Цепь обходного выключателя: Iраб max = 954,55 А;

РГ-35-1000Iном = 1000 А; Uном = 35 кВ;

Фидеры контактной сети:Iраб max = 400 А;

РГ-35-1000Iном = 1000 А; Uном = 35 кВ;

Фидеры ДПР:

РГ-35-1000Iном = 1000 А; Uном = 35 кВ;

Вводы ТСН:

РГ-35-1000Iном = 1000 А; Uном = 35 кВ;

РУ-10кВ:

Вводы НН понижающего трансформатора:Iраб max = 1385,64 А;

РГ-35-2000Iном = 2000 А; Uном = 35 кВ;

Выбор заземлителей

Фидеры районных потребителей:Iраб max = 112,58 А;

ЗР-10 НУЗI терм. ст. =90 А; Uном = 10 кВ;

Секционный выключатель: Iраб max = 1293,26 А;

ЗР-10 НУЗI терм. ст. =90 А;Uном = 10 кВ

Выбор предохранителей

Предохранители на напряжение свыше 1000 В используют для защиты трансформаторов напряжения в РУ – 6; 10 кВ, при этом применяют предохранители типа ПКН, ПК и ПКТ (трубчатые с кварцевым заполнителем).

Предохранители выбирают по номинальному току: , 80 > 60 А

Выбираем трубчатый предохранитель с кварцевым заполнителем, для ТН типа: ПКТ104-10-100-31,5 У3

Выбор трансформаторов тока.

РУ-110 кВ:

Рабочая перемычка ТП: Iраб max = 1168,14 А;

ТВ-110-1200/5I1ном = 1200 А; Uном = 110 кВ;

Ремонтная перемычка ТП: Iраб max = 1168,14 А;

ТГФ-110-1200/5 I1ном = 1200 А; Uном = 110 кВ;

Вводы ВН тягового трансформатора:I раб max = 340,91 А;

ТВ-110-400/5I1ном = 400 А; Uном = 110 кВ;

Вводы ВН районного трансформатора: Iраб max = 125,97 А;

ТВ-110-150/5I1ном = 150 А; Uном = 110 кВ;

РУ-2х27,5 кВ:

Цепь обходного выключатель: Iраб max = 954,55 А;

ТВ-35-1000/5I1ном = 1000 А; Uном = 35 кВ;

Вводы НН понижающего трансформатора: Iраб max = 681,82 А;

ТВ-35-800/5I1ном = 800 А; Uном = 35 кВ;

Фидеры контактной сети: Iраб max = 400 А;

ТВ-35-400/5I1ном = 400 А; Uном = 35 кВ;

Фидеры ДПР:

ТВ-35-400/5I1ном = 400 А; Uном = 35 кВ;

Вводы ТСН:

ТВ-35-400/5I1ном = 400 А; Uном = 35 кВ;

РУ-10кВ:

Вводы НН понижающего трансформатора:Iраб max = 1385,64 А;

GDS-10-1500/5 I1ном = 1500 А; Uном = 10 кВ;

Секционный выключатель: Iраб max = 1293,26 А;

GDS-10-1500/5 I1ном = 1500 А; Uном = 10 кВ;

Фидеры районных потребителей:Iраб max = 112,58 А;

GDS-10-150/5 I1ном = 150 А; Uном = 10 кВ;

Выбор трансформаторов напряжения.

РУ-110 кВ.

Перемычка транзитной ТП

Три однофазныхТН: 3хЗНОГ-110

РУ-2х27,5 кВ.

Шины тягового РУ-2х27,5 кВ

Четыре однофазных ТН: 4´ЗНОЛ-35

РУ-10 кВ.

Шина районного РУ-10 кВ

Однофазные ТН: 3хНОЛ-10

Выбор ограничителей перенапряжения.

РУ-110 кВ

ОПН-У/ТЕL-110-УХЛ1

Uн = Uн.уст = 110 кВ

РУ-2х27,5 кВ

ОПН-У/TEL-27,5-УХЛ1

Uн = Uн.уст = 27,5 кВ

РУ-10 кВ

ОПН-Т/TEL-10-УХЛ1

Uн = Uн.уст = 10 кВ


Глава 2. Расчёт токов короткого замыкания

2.1 Расчетная схема тяговой подстанции

2.2 Электрическая схема замещения


2.3 Расчёт сопротивлений элементов схемы замещения

Расчет сопротивлений системы

По расчётной схеме (рис.6) и схеме замещения (рис.7.) найдём относительные сопротивления энергосистемы:

где: - базисная мощность, принимаем 100 МВА;

- мощность короткого замыкания, МВА.

Относительные сопротивления ЛЭП:

где: - удельное сопротивление проводов 1 км линии, =0,4 Ом/км;

l – длина линии, км.

Относительные сопротивления обмоток районного трансформатора:


где: - номинальная мощность трансформатора, МВА.

Преобразуем схему замещения до точки К3 (Рис.8.):

Преобразуем треугольник сопротивлений  в эквивалентную звезду (рис.8.б):

Звезду сопротивлений  преобразуем в треугольник (рис.8.г):

Убираем ветвь, содержащую сопротивление , так как точки источников питания равнопотенциальны, то ток через эту ветвь не потечёт и сопротивлением  можно пренебречь. После преобразования получим схему:

Преобразуем схему замещения до точки К3:

Преобразуем звезду сопротивлений  в треугольник (рис.8.е):


Убираем ветвь, содержащую сопротивление , так как точки источников питания равнопотенциальны, то ток через эту ветвь не потечёт и сопротивлением  можно пренебречь.

После преобразования получим схему (рис.8.ж).

2.4 Расчёт токов короткого замыкания на шинах РУ

Расчет токов короткого замыкания на шинах ОРУ 110 кВ

Проверяем на удалённость точку короткого замыкания К1:

следовательно, короткое замыкание удалённое от первого источника питания.


следовательно, короткое замыкание удалённое от второго источника питания.

где: - мощность источника, МВА

При расчёте токов короткого замыкания от первого и второго источников используем приближенный метод, так как короткое замыкание удалённое.

Расчёт периодической составляющей.

кА;

кА;

кА.

Расчёт апериодической составляющей.

Апериодическую составляющую определим по формуле:

,

где:

- время отключения тока короткого замыкания;

- собственное время отключения выключателя; для выключателя РМ-121-20/1200 =0,025 с;

- постоянная времени затухания, равная 0,02 сек (1);

- минимальное время срабатывания релейной защиты =0,01 с;

= 0,025+0,01=0,035 с.

кА.

Определение ударного тока.

=3,160 кА;

где: - ударный коэффициент, равный 1,61 (1).

Определение полного тока короткого замыкания.

кА.

Ток однофазного к. з.

Расчет токов короткого замыкания на шинах РУ 10 кВ

Проверяем на удалённость точку короткого замыкания К3:

следовательно, короткое замыкание удалённое от первого источника питания.


следовательно, короткое замыкание удалённое от второго источника питания.

Где: - мощность источника, МВА

При расчёте токов короткого замыкания от первого и второго источников используем приближенный метод, так как короткое замыкание удалённое.

Расчёт периодической составляющей.

кА;

кА;

кА.

Расчёт апериодической составляющей.

Апериодическую составляющую определим по формуле:

,

где:

- время отключения тока короткого замыкания;

- собственное время отключения выключателя;

для выключателя BB/TEL-10/1600 =0,015 с;

- постоянная времени затухания, равная 0,03 сек (1);

- минимальное время срабатывания релейной защиты =0,01 с;

= 0,015+0,01=0,025 с.

кА.

Определение ударного тока.

=13,215 кА;

где: - ударный коэффициент, равный 1,72 (1).

Определение полного тока короткого замыкания.

кА.

Расчет токов короткого замыкания на шинах РУ 2х27,5 кВ

Определение тока короткого замыкания между контактным проводом и рельсовой цепью (периодическая составляющая):

где: и - сопротивление фазы энергосистемы и трансформатора;

n – количество работающих трансформаторов;

- мощность короткого замыкания на первичной стороне понижающего трансформатора, МВА.

где: - напряжение КЗ в %.

Определение тока короткого замыкания между контактным и питающим проводом (периодическая составляющая):

где: и - сопротивление фазы энергосистемы и трансформатора;

n – количество работающих трансформаторов;

- мощность короткого замыкания на первичной стороне понижающего трансформатора, МВА.

где: - напряжение КЗ в %.

так как , то в дальнейших расчетах периодическую составляющую будем принимать равной .

Расчёт апериодической составляющей.

Апериодическую составляющую определим по формуле:

,

где:

- время отключения тока короткого замыкания;


- собственное время отключения выключателя;

для выключателя ВГБЭ-35/1000 =0,04 с;

- постоянная времени затухания, равная 0,02 сек (1);

- минимальное время срабатывания релейной защиты =0,01 с;

= 0,04+0,01=0,05 с.

кА.

Определение ударного тока.

=6,121 кА;

где: - ударный коэффициент, равный 1,6 (1).

Определение полного тока короткого замыкания.

кА.

2.5 Выбор трансформатора собственных нужд

На тяговой подстанции устанавливают два ТСН с вторичным напряжением 380/220 В, каждый из которых рассчитан на полную мощность собственных нужд.

Питание ТСН на тяговых подстанциях переменного тока осуществляем от шин 2 ´ 27,5 кВ.

Необходимая мощность для питания собственных нужд переменного тока может быть определена суммированием всех мощностей потребителей подстанции.

Расчётная мощность для питания собственных нужд (мощность ТСН) определяется:

Расчётную мощность ТСН определим по формуле:

где: Sу – установленная мощность ТСН:

где: - суммарная активная мощность, кВт;

- суммарная реактивная мощность, кВАр.

где: - коэффициент использования установленной мощности;

- заданная мощность собственных нужд;

 - тангенс конкретного вида собственных нужд.

Мощность подогрева элегаза и приводов высоковольтных выключателей:

Таблица №4.

Тип выключателяРэлегаза, кВтРпривода, кВтКол-во выкл-ейРобщ, кВт
РМ – 1214,80,7633
ВГБЭ – 350,80,81219,2
Итого:52,2

Данные по цепям собственных нужд:


Таблица №5.

Наименование потребителякиcosfftgfP, кВтPу, кВтQу, кВА
Рабочее освещение0,71002416,80
Моторные нагрузки0,750,836,90,753526,319,7
Печи отопления и калориферы0,6510023150
Потребители СЦБ0,750,836,90,754231,523,6
Зарядно-подзарядный агрегат0.71009,36,50
Итого:96,143,3

кВАр;

По рассчитанной мощности выбираем ТСН типа: ТМ –160/27,5 – 74 У1.

Технические характеристики трансформатора ТМ – 160/27,5 – 74 У1.

Таблица № 6

Тип трансформатораНоминальное напряжение обмоток , кВПотери, кВтuК, %IХ,%Схема и группа соединения обмоток
ВНННРХРК
ТМ –160/27,5 – 74 У127,50,40,662,656,52,4Y/Y0-0

2.6 Схемы питания потребителей собственных нужд

Питание потребителей собственных нужд переменного тока осуществляется от системы сборных шин 380/220 В. В качестве резервного источника электроэнергии собственных нужд переменного тока используют дизель – генератор.


Рис.3. Принципиальная схема питания СН переменного тока открытой части тяговой подстанции: фидеры: 1 и 10 – шкафа СН в здании подстанции; 2 – обдува понижающих трансформаторов; 3 – ВЛСЦБ; 4 – освещения камер 10 кВ и СЦБ; 5 – резервный; 6 – освещения открытой части подстанции; 7 – передвижного масляного хозяйства; 8 – питания дистанций контактной сети; 9 – подогрева элегаза и приводов высоковольтных выключателей и ячеек КРУН.


Рис.4. Принципиальная схема питания СН переменного тока закрытой части тяговой подстанции: фидеры: 1 – сверлильного и наждачного станков; 2 – электрических печей щитовой и подсобных помещений; 3 – электрических печей; 4 – насоса откачки воды из баков для слива масла; 5 – питания двигателей вентиляторов машинного зала; 6,7 и 8 – питания соответственно пульта дистанционного управления разъединителями контактной сети, стоек телемеханики и автоматики; 9 – питания подзарядных устройств; 10 – калориферов и вентиляторов помещения аккумуляторной батареи; 11 – освещения здания тяговой подстанции; 12 – электрических печей помещения дизель – генератора; 13 – вентиляторов помещения дизель – генератора. Вводы: I и III – фидеров СН от ТСН на открытой части тяговой подстанции; II – резервный от дизель – генератора


Рис.5. Принципиальная схема питания СН постоянного тока. Цепи питания: 1 – приводов высоковольтных выключателей; 2 – устройств управления и сигнализации; 3 – аварийного освещения; 4 – унифицированного преобразователя напряжения устройств автоматики и телемеханики.

2.7 Расчёт токов короткого замыкания в цепях собственных нужд

При расчёте необходимо учесть особенности:

Учитываем активное и реактивное сопротивление цепи КЗ;

Расчёт сопротивлений выполняем в именованных единицах (Ом, мОм);

Определяем конкретные значения времени затухания апериодической составляющей тока

Расчёт периодической составляющей тока КЗ ведется по закону Ома;

Необходимость учёта сопротивлений всех элементов цепи КЗ.

Составим расчётную схему цепей собственных нужд:


Рис. 9.

Составляем схему замещения

Рис. 10.


Преобразуем схему замещения.

Рис. 11.

Найдём максимально рабочий ток во вторичной обмотке трансформатора собственных нужд:

где: кпер – коэффициент перегрузки трансформатора, равный 1,5;

SнТСН – номинальная мощность трансформатора собственных нужд, кВА;

Ucр – среднее напряжение вторичной обмотки ТСН, равное 0,38 кВ.

Найдём сопротивление ТСН:

где: uк – напряжение короткого замыкания ТСН, %;

- номинальное напряжение вторичной обмотки ТСН, кВ;

- номинальная мощность ТСН, кВА.

Найдём сопротивление трансформатора тока:<

Подобные работы:

Актуально: