Процеси у виробництві будівельних матеріалів і виробів
B. C. Богданов, А.С. Ільін, И.А. Семикопенко
ПРОЦЕСИ У ВИРОБНИЦТВІ БУДІВЕЛЬНИХ МАТЕРІАЛІВ І ВИРОБІВ
Підручник для вузів
Під редакцією B. C. Богданова
Рекомендований Навчально-методичним об'єднанням вузів РФ за освітою в області будівництва як підручник для студентів вищих учбових закладів, що навчаються по напряму "Будівництво" (635500).
Білгород "Везеліца" 2007
Содержание
Розділ 1. Змішування компонентів будівельних сумішей
1.1. Змішування компонентів сипких будівельних сумішей (мас)
1.1.1 Закономірності змішування
1.1.2 Параметри, що впливають на якість змішування
1.1.3 Диспергіроване змішування сипких матеріалів
Розділ 2. Формування будівельних сумішей
2.1. Вібраційне формування (ущільнення) бетонних сумішей
2.2. Відцентрове формування
2.3. Роликове формування
2.4. Пресування порошкоподібних будівельних матеріалів
2.4.1 Визначення. Класифікація
2.4.2 Закономірності пресування
2.4.3 Параметри пресування
2.5. Випресовування
2.6. Екструзійне формування
2.7. Реологія будівельних матеріалів
Розділ 3. Дозування сипких і рідких матеріалів
3.1. Дозування будівельних матеріалів і рідких продуктів
3.2. Засипка прес-форм формувальною сумішшю
Розділ 4. Грануляція
4.1. Загальні відомості
4.2 Класифікація процесів грануляції
4.3. Грануляція на тарілчатих агрегатах
Розділ 1. Змішування компонентів будівельних сумішей
Змішування (перемішування) - це технологічний процес утворення однорідних систем шляхом приведення в тісне зіткнення твердих і в'язко-пластичних тіл, рідин, газів або їх поєднань.
Змішування твердих тіл, в'язко-пластичних, рідких і інших середовищ здійснюється механічним, гідравлічним, пневматичним, комбінованим і іншими способами.
Машини, вживані для змішування компонентів будівельних сумішей, називаються змішувачами (міксерами) і рідше мішалками.
1.1. Змішування компонентів сипких будівельних сумішей (мас)
При виробництві таких будівельних матеріалів, як силікатна і будівельна цеглина, каміння, блоки, плити, плитки, сухі будівельні суміші і т.п. важливе місце відводиться технологічному процесу підготовки сировинних формувальних сумішей (мас) вогкістю не більше 10%. Від якості підготовки сумішей залежить і якість готових виробів (17, 49).
1.1.1 Закономірності змішування
Механізм дії змішування компонентів сипких сумішей (мас) є дуже складним і залежить від великої кількості чинників, у тому числі від параметрів змішувача і режимів його роботи.
Змішування сипких будівельних матеріалів складається з наступних механічних операцій: переміщення груп частинок матеріалу з одного місця в інше, так зване конвективне змішування (I); перерозподіл частинок при їх переміщенні, так зване дифузійне змішування (II); зосередження частинок в окремих місцях, так звана сегрегація частинок (мал.5.1).
В результаті змішування відбувається взаємне переміщення частинок різних компонентів суміші, що знаходяться до перемішування або окремо, або в неоднорідному стані (17, 49).
Ідеально в результаті змішування повинна вийти така суміш компонентів, що в будь-якій її точці (пробі) до кожної частинки одного з компонентів примикають частинки іншого компоненту в кількості, визначуваній співвідношенням 1:
1. Наприклад, якщо суміш складається з трьох компонентів, маси яких співвідносяться як числа А: В: С, то в будь-якому достатньо малому об'ємі (пробі), узятому випадково в довільному місці (точці), після змішування маси цих компонентів теж повинні відноситися як числа а: : с.
Мал.5.1. Залежність коефіцієнта неоднорідності від часу змішування
Проте таке ідеальне змішування, тобто той, що рівномірне розташовує частинок в суміші в реальних умовах, не спостерігається (17,49).
Щоб оцінити якість змішування однією випадковою величиною, суміш умовно вважають двокомпонентною. Для чого з суміші виділяють який-небудь один компонент, званий умовно основним (ключовим). Решту компонентів, що входять в суміш, об'єднують в другий (загальний) компонент. По ступеню розподілу ключового (основного) компоненту в суміші, тобто в другому умовному компоненті, судять про якість змішування. Вибір компонентів при цьому є суб'єктивним.
Розроблено досить багато формул (емпіричної залежності) для розрахунку критерію якості змішування. Наприклад, при безперервному збільшенні поверхні розділу між компонентами за рахунок упровадження (дифузії) процес змішування описується наступним рівнянням
(5.1)
де S - поточна величина поверхні розділу; S0 - максимально можлива поверхня розділу; е - підстава натурального логарифма, е = 2,71; k - коефіцієнт пропорційності; t - час змішування.
Іноді процес змішування зв'язується з впливом розміру і густини частинок окремих компонентів суміші, тобто з явищем сегрегації (розшарування). Ступінь змішування без урахування розшарування суміші описується залежністю
(5.2)
де А - постійний коефіцієнт, що враховує властивості сумішей (матеріалу), тип і режим роботи змішувача; t - час змішування; е = 2,71 - основа натурального логарифма.
Найбільше поширення для оцінки якості змішування компонентів сипкої будівельної суміші набув коефіцієнт неоднорідності (варіації)
(5.3)
де - середнє квадратичне відхилення концентрації ключового компоненту в пробах; - середньоарифметичне значення концентрації ключового компоненту в пробах; сі - значення концентрації ключового компоненту в і-ої проби; п - число аналізованих (відібраних для аналізу) проб.
Чим менше значення тим вище якість змішення компонентів суміші і її однорідність.
Під кінетикою змішування розуміється закономірність протікання процесу в часі (17, 49, 73).
Закономірність зміни концентрації речовини в потоці при змішенні описується рівнянням (73).
(5.4)
де Q - витрата компонентів; СН, С - концентрація індикатора відповідно на вході і на виході змішувача; дτ - час змішування; Vс - об'єм робочого органу змішувача.
Ліва частина рівняння (5.4) виражає кількість індикатора, що поступає в змішувач. В правій частині рівняння перший доданок є кількістю індикатора, виведеного із змішувача, друге - кількість індикатора, що знаходиться в змішувачі з урахуванням концентрації його, що змінилася, за час дτ (73).
Приймаючи наступні параметри:
, одержимо рівняння
(5.5)
У разі так званого процесу "вимивання", коли в поступаючому потоці індикатор відсутній, тобто Сн = 0, рівняння має вигляд (8):
(5.6)
Середній час перебування частинок в змішувачі τср означає, що об'їм речовини, що поступає в змішувач за час τср, чисельно рівний його місткості і є випадковою величиною (17, 73).
Середній час перебування частинок в умовних осередках (зонах) змішувача, що визначає якість змішування, залежить від конструкції і режиму роботи змішувача і фізико-механічних і технологічних властивостей перемішуваних компонентів суміші і визначається експериментально. В більшості промислових змішувачів можна одержувати суміші з якістю змішування не нижче 20% (17, 49).
1.1.2 Параметри, що впливають на якість змішування
З численних чинників, які впливають на процес змішування сипких будівельних сумішей, в першу чергу слід назвати концентрацію ключового компоненту, вогкість і модуль крупної суміші, оброблюваного матеріалу, час змішування і конструктивно-технологічні параметри змішувача. Зрозуміло, що розглянути всі випадки змішування будівельних сипких сумішей тут неможливо. Тому обмежимося тільки тими, які представляють науковий і практичний інтерес.
Як показали дослідження (17, 54, 79), концентрація ключового компоненту в суміші істотно впливає на критерій якості змішування (мал.5.2).
Із збільшенням концентрації ключового компоненту значення коефіцієнта неоднорідності змішування зменшується, досягає мінімально можливої величини і далі не знижується. Графік залежності має нелінійний вигляд. Встановлено, що при концентрації компоненту більше 10% можна добитися мінімального значення коефіцієнта неоднорідності змішування в двохвальних змішувачах безперервної дії. У тому випадку, коли в суміші знаходиться ключового компоненту менше 10%, то буде потрібно додатковий час на обробку суміші і, можливо, змішувач циклічної дії. Проте зважаючи на малу концентрацію і випадковий характер процесу коефіцієнт неоднорідності виходить великим.
Вогкість суміші також впливає на критерій якості змішування. Із збільшенням вогкості суміші коефіцієнт неоднорідності змішування збільшується (мал.5.2). Очевидно, що за наявності вологи процес змішування проходить менш ефективно, ніж при сухих компонентах суміші. Тому на практиці іноді застосовують двохступінчате (двохстадійне) змішування. Спочатку змішують сухі компоненти, а потім проводять змішування з додаванням води до заданої вогкості (54, 79).
Рис 5.2. Залежність коефіцієнта неоднорідності змішування від вогкості (1) суміші і концентрації компоненту (2)
Рис 5.3. Залежність коефіцієнта неоднорідності змішування від висоти суміші (1) і частоти обертання лопатей (2)
З технологічних чинників, що впливають на ефективність змішування, слід назвати кількість (об'їм) сировинної суміші, обробці, що піддається. В одновальних і двохвальних змішувачах безперервної дії кількість суміші можна характеризувати заввишки суміші в лотку (кориті). Із збільшенням висоти суміші коефіцієнт неоднорідності змішування спочатку знижується, досягає мінімально можливої величини, а потім знову починає рости (мал.5.3). У одновального змішувача це зростання виявляється менш, а у двохвального - більш істотно. Оптимально можливі значення коефіцієнта неоднорідності змішування силікатної формувальної маси у цих змішувачів різні (54,79).
Частота обертання лопатей змішувачів в лоткових змішувачах впливає на якість змішування неоднозначно. Коефіцієнт неоднорідності змішування силікатної суміші із збільшенням частоти обертання лопатей спочатку знижується, досягає мінімальної величини, а потім знову починає збільшуватися (мал.5.3). Залежність носить нелінійний характер і спостерігається як на одновальних, так і двохвальних змішувачах. Можна вважати, що в області регулювання частоти обертання лопатей від 1,5 до 2,1 с-1 коефіцієнт неоднорідності змішування в двохвальних змішувачах безперервної дії мало змінюється і досягає майже мінімальної величини.
Майже така ж закономірність і при дослідженні залежності коефіцієнта неоднорідності змішування від кута установки лопатей на валах змішувачів. В діапазоні зміни кута нахилу лопатей від 35 до 60° досягається мінімально можлива величина коефіцієнта неоднорідності змішування по ключовому компоненту. Максимальна продуктивність досягається при куті нахилу 45° (мал.5.4).
Мал.5.4. Залежність продуктивності (1) і коефіцієнта неоднорідності змішування (2) від кута нахилу лопатей на валу.
Зміна продуктивності і коефіцієнта неоднорідності по обидві сторони від кута 45°, зразкове однакове і невелике, тобто рівну продуктивність можна одержати, встановлюючи лопаті під кутом в 30 і 60°. Цим частково можна пояснити різноманіття значень кутів нахилу лопатей в змішувачах безперервної дії.
Момент сили на валах змішувачів в одновальних і двохвальних змішувачах безперервної дії при змішенні, наприклад, силікатних формувальних сумішей змінюється неоднозначно залежно від зміни основних параметрів (мал.5.5). Так, наприклад, момент сили росте із збільшенням об'єму суміші в лотку.
Мал.5.5. Залежність моменту сили на валах від висоти суміші в лотку (1), кута нахилу лопатей (2) і вогкості оброблюваної суміші (3).
Графік залежності має лінійний вигляд. А збільшення кута нахилу лопатей приводить до зменшення моменту сили. Залежність носить також лінійний характер. Із збільшенням вогкості суміші момент сили на валах спочатку зменшується, досягає мінімальної величини, а потім знову починає збільшуватися. Графік залежності має нелінійний вигляд. Зміна вогкості від 5 до 7% не позначається істотно на зміні моменту сили на валах змішувача. Отже, знаючи оптимальні значення основних параметрів змішування, можна розрахувати момент сили на валах, потужність електродвигуна і продуктивність змішувача (17, 54, 79).
Продуктивність лопатевих змішувачів безперервної дії можна розрахувати по формулі (17, 54, 79)
(5.7)
де D, d - відповідно зовнішній і внутрішній діаметри лопатей; SB - крок гвинтової лінії установки лопатей; п - частота обертання лопатей; Zл - кількість лопатей, встановлених на одному кроці гвинтової лінії; ZB - кількість валів змішувачів; Кл - коефіцієнт, що враховує взаємне перекриття лопатей в поперечному перетині лотка (корита); КН - коефіцієнт, що враховує ступінь заповнення лотка (корита) сумішшю.
Потужність приводу двохвальних змішувачів безперервної дії (17)
(5.8)
де р - питомий опір суміші при обертанні лопатей змішувачів; ZB - кількість валів змішувачів; Sі - площа проекції і-тої лопаті на напрям обертання; Rі - відстань від осі обертання до центру тяжіння і-тої лопаті; ω - кутова швидкість валу змішувача; η - КПД приводу змішувача.
Використовування оптимальних значень параметрів змішування і конструктивно-технологічних параметрів змішувачів дає можливість їх оптимального конструювання і ефективного використовування в промисловості будівельних матеріалів для обробки багатокомпонентних формувальних будівельних сумішей.
1.1.3 Диспергіроване змішування сипких матеріалів
Зміна фізико-механічних і технологічних властивостей сировинних формувальних сумішей (мас) спікання, грануляція, гасіння, сегрегації, зволоження і т.п. вимагають вдосконалення технології приготування суміші. Одним із способів ефективної переробки формувальних будівельних сумішей є диспергіроване змішування, тобто одночасне подрібнення і змішування. Диспергірування - це тонке подрібнення твердих тіл, що приводить до утворення дисперсних систем. Диспергіроване змішування може здійснюватися в спеціальних машинах: швидкохідних двохвальних змішувачах безперервної дії; барабанних стрижньових розтирачах-гомогенізаторах, дискових і щіткових змішувачах і ін. (17, 46, 54, 79, 103).
Мал.5.6. Блок-схема програми моделювання диспергірованого змішування на ЕОМ.
Відомо, що хімічні реакції проходять по поверхні речовин, тобто по поверхні контактів між частинками матеріалу. Тому для підвищення інтенсивності хімічних реакцій речовин вимагається збільшити число контактів між частинками (компонентами). Цю мету переслідує процес подрібнення і процес змішування. Проте неможливо забезпечити достатнє число контактів суміші, якщо цю суміш тільки подрібнити або, навпаки, тільки змішати. Отже, одночасне подрібнення і змішування повинні характеризуватися єдиним узагальненим критерієм обробки. Таким критерієм, наприклад, може служити число контактів між компонентами суміші, вимірюване непрямим способом на основі моделювання (46, 54).
Моделювання процесу на ЕОМ дозволяє одночасно для кожного стану умовного об'єму елементів визначити число контактів елементів різних видів і дисперсію змісту елементів одного вигляду. Блок-схема програми моделювання приведена на мал.5.6 (46, 54).
При виконанні машинного експерименту задавалися наступними значеннями концентрації одного з компонентів: 0,033; 0,10; 0,17; 0,234; 0,333; 0,50. Для знаходження рівняння регресії використовували метод якнайменших квадратів. На рис 5.7 і 5.8 приведена графічна залежність числа контактів N елементів різних видів і коефіцієнтів лінійної регресії β1 і β2від дисперсії ключового компоненту D при різних значеннях концентрації α. Аналітична залежність для β1β2і N мають вигляд
(5.9)
(5.10)
Мал.5.7. Залежність числа контактів N від дисперсії D і концентрації елементів а
Для практичного використовування, наприклад, стосовно обробки одиниці маси силікатної формувальної суміші, залежність (5.10) приводиться до вигляду
(5.11)
де а - математичне очікування змісту ключового компоненту в суміші; d - середній діаметр частинки суміші.
Мал.5.8. Залежність коефіцієнтів β1 і β2, від концентрації елемента а
Інтенсивність обробки силікатної суміші в барабанному стрижньовому розтирачі-змішувачі рекомендується визначати по формулі (46, 54, 79, 103)
(5.12)
де Q - продуктивність подрібнення-змішувача, кг/год; с - коефіцієнт проковзування стрижнів; φ - коефіцієнт заповнення барабана стрижньовим завантаженням; N1 і N2 - відповідно потужність, затрачувана на підйом і утримання стрижньового завантаження і на повідомлення енергії стрижням, кВт; k - відносний коефіцієнт скачування і підйому стрижнів; ψ - коефіцієнт відносної частоти обертання барабана. Рівняння кінетики подрібнення - змішування (46, 54, 103)
(5.13)
де п - поточне значення якості обробки суміші; пм - максимально можлива якість обробки суміші; п0 - якість суміші до її обробки; А - постійний коефіцієнт, що характеризує технологічну ефективність обробки; t - час обробки суміші.
Інтенсивність обробки суміші λ необхідно визначити досвідченим шляхом, для чого суміш піддається двократній обробці (46, 54, 79, 103).
Розділ 2. Формування будівельних сумішей
Формування - технологічний процес (сукупність процесів) отримання з формувальних сировинних сумішей (мас) виробів-напівфабрикатів заданої форми, розмірів, густини, міцності під дією зовнішніх силових дій.
Розрізняють наступні способи формування: пресування, литво, прокат, брикетування, центрифугування, віброформування, вакуумування і ін.
Формування буває: попереднє, остаточне, дискретне (циклічне), безперервне і ін.
В промисловості збірного залізобетону найбільше розповсюдження одержало вібраційне, відцентрове, прокатне і екструзійне формування бетонних і інших формувальних сумішей.
2.1. Вібраційне формування (ущільнення) бетонних сумішей
Вібраційне формування буває: ударне, власне вібраційне, імпульсне, вібровакуумне і комбіноване.
Вібраційне формування - це формування з використанням вібраційної дії на бетонну суміш, при якій внутрішні опори в ній знижуються, настільки, що сили тяжіння частинок суміші виявляються достатніми для її ущільнення.
В процесі формування бетонної суміші відбувається більш повне укладання частинок, яке супроводжується видаленням з суміші повітря і зростанням в 1,3...1,4 рази густині суміші в порівнянні з первинною, тобто відбувається її ущільнення. Звичайно ступінь ущільнення суміші оцінюють коефіцієнтом ущільнення Ку = 1 - П, де П - погрішність суміші. Для важких бетонів з осіданням конуса більше 4 см Ку повинне бути не менше 0,98, а для жорстких і дрібнозернистих сумішей не менше 0,96.
При найпоширенішому вібраційному формуванні зв'язку між частинками свіжоукладеної бетонної суміші слабшають настільки, що пухирці повітря спливають, вгору, а частинки заповнювача бетонної суміші під дією сил тяжіння опускаються вниз, сприяючи витісненню повітря. При вібраційній дії різко падає в'язкість бетонної суміші, і вона по своїх властивостях наближається до рідин. Падіння в'язкості, тобто ослаблення зв'язків між частинками бетонної суміші, відбувається завдяки тому, що вібрація викликає відносне переміщення частинок, і ослаблення цих зв'язків відбувається тим повніше, чим вище відносні швидкості їх проковзування. Отже, щоб встановити основні закономірності вібраційного формування, необхідно з'ясувати причину виникнення відносного проковзування частинок бетонної суміші при вібраційній дії на неї і причину, що обумовлює істотне зниження зв'язків між частинками при виникненні цього проковзування.
Процес вібраційного формування бетонних сумішей дуже складний. Тому розглянемо його у вигляді, що схематизував. Дня цього представимо бетонну суміш у вигляді різних за розміром частинок крупного заповнювача, дотичних між собою і стінками судини, в якій знаходиться бетонна суміш. Простір між частинками крупного заповнювача займає цементно-піщаний розчин, що включає пухирці повітря. Отже, бетонна суміш є трифазним середовищем, що складається з твердої (частинки крупного заповнювача), рідкої (цементно-піщаний розчин) і газоподібної (пухирці повітря) фаз.
Приведемо місткість, в якій знаходиться бетонна суміш, в гармонійний коливальний рух з частотою ω, якщо в цю місткість зануримо яке-небудь тіло, що коливається. Тоді від внутрішніх поверхонь емкості або від поверхні зануреного тіла (випромінюючих поверхонь) коливання почнуть передаватися дотичним з ними частинкам крупного заповнювача і цементно-піщаному розчину. Сили сухого тертя між дотичними частинками крупного заповнювача і в'язкий опір цементно-піщаного розчину почнуть захоплювати в коливальний рух частинки бетонної суміші, видалені від випромінюючих поверхонь. Проте частинки крупного заповнювача володіють достатньо великою масою і, отже, інерційністю і тому чинитимуть опір залученню в цей коливальний рух. При цьому частинки крупного заповнювача з більшою масою матимуть менші розмахи коливань, а частинки з меншими масами великі, оскільки останні володіють меншим відношенням маси до поверхні, від якої залежать сили в'язкого опору залучаючого їх до коливального руху. Опір, що виникає при відносному русі частинок крупного заповнювача і цементно-піщаного розчину, викличе різні по значенню фазові зсуви переміщень частинок крупного заповнювача щодо коливань випромінюючих поверхонь. Таким чином, між частинками крупного заповнювача виникнуть відносні проковзування, швидкості яких у міру видалення від випромінюючих поверхонь знижуватимуться і на деякій відстані від них впадуть до нуля.
Відстань, на яку розповсюджуються коливання в товщі бетонної суміші, залежить від напряму коливань відносно випромінюючої поверхні. Якщо коливання перпендикулярні випромінюючій поверхні, то вони передаються бетонній суміші шляхом сполучення їй імпульсів стиснення або збудженням в ній нормальних напруг, що періодично змінюються. Якщо коливання дотичні у напрямку до випромінюючої поверхні, то збудження коливань в бетонній суміші відбувається за рахунок дотичних напруг, що періодично змінюються. При збудженні коливань за рахунок нормальних напруг вони розповсюджуються в бетонній суміші на більшу глибину, ніж у разі збудження коливань дотичними напругами.
В першому наближенні можна вважати, що при постійній амплітуді переміщення випромінюючої поверхні сили в'язкого опору цементно-піщаного розчину ростуть пропорційно швидкості і, отже, з підвищенням частоти гармонійних коливань вони ростуть пропорційно ω. Інерційні ж сили збільшуються пропорційно ω2. Отже, при зростанні частоти коливань абсолютні значення переміщень більш дрібних частинок крупного заповнювача знизяться, а це в сукупності із згаданими фазовими зсувами приведе до зростання швидкостей їх проковзування відносно навколишнього середовища. Цим пояснюється доцільність підвищення частоти коливань при формуванні бетонних сумішей з дрібним заповнювачем. Таким чином, в спрощеному вигляді пояснюються причини виникнення відносного проковзування частинок бетонної суміші при вібраційній дії на неї.
Мал.6.1. Паралелограм векторів сил і швидкостей
Тепер з'ясуємо причини, при яких різко знижуються сили зв'язків між частинками бетонної суміші в умовах їх відносного проковзування. Перш за все, з'ясуємо, чому при відносному проковзуванні частинок бетонної суміші сили їх тяжіння виявляються достатніми для подолання сил сухого тертя, обумовлених взаємним затисканням частинок крупного заповнювача. Для цього скористаємося результатами досліджень вібраційного зниження тертя, виконаних Г.Ю. Джанелідзе, И.И. Блехманом і І.І. Биховськім, і розглянемо поведінку тіла М, яке ковзає по поверхні іншого тіла із швидкістю v (мал.6.1). Цей рух може відбуватися за інерцією або під дією деякої сили Р. В останньому випадку вектор швидкості v співпадає по напряму з вектором сили Р. Тепер в позитивному напрямі осі х прикладемо до тіла М миттєвий імпульс сили, що викликає рух тіла з швидкістю і, вектор якої з первинним вектором швидкості v складає кут φ, і одночасно прикладемо до тіла М силу Q, що забезпечує постійність швидкості і. Для цього необхідно, щоб Q = Fu, тобто модулю видимої сили тертя, яку повинна долати сила Q. Вектор результуючої швидкості ω тіла визначиться як
.
Дійсна сила тертя F, прикладена до тіла М, діє уздовж вектора швидкості ω в напрямі, протилежному йому. Силу F можна розкласти на дві складові Fu і Fv які направлені відповідно в сторони, протилежні векторам швидкостей u і v.
З подібності трикутників виходить, що Fu = uF/ω. Підставивши в цей вираз значення ω, одержимо
(6.1)
Але сили тертя пропорційні коефіцієнтам тертя
(6.2)
де N - сила нормального тиску; f - дійсний коефіцієнт тертя ковзання; fu - видимий (уявний) коефіцієнт тертя ковзання. З врахуванням (6.2) рівність (6.1) приймає вигляд
(6.3)
В окремих випадках при
.
Останні вирази показують, що при будь-яких значеннях кута φ, якщо . З цього виходить, що видимий коефіцієнт тертя, а,значить, і видима сила тертя сталі пропорційними швидкості u, тобто опір став як би лінійно-в'язким. Таке явище часто називають лінеаризацією тертя.
Одержаний результат говорить про те, що якщо тіло М рухалося рівномірно під дією сили Р з деякою швидкістю v (згідно закону Кулона, Р≥Nf), змінити модуль або напрям вектора швидкості тіла М, що рухається, може практично будь-хто скільки завгодно мала сила Q. Проте це лише уявне зниження тертя, оскільки в напрямі, протилежному від результуючого вектора швидкості ω (мал.6.1), діє повна сила тертя F=Nf. Отже, коли при вібраційній дії на бетонну суміш починаються відносні проковзування частинок бетонної суміші, то сила їх тяжіння, подібно малій по значенню силі Q, здатна примусити ці частинки рухатися вниз.
Окрім крупного заповнювача бетонна суміш складається з цементно-піщаного розчину з включеннями бульбашок повітря. Цей розчин може розглядатися як деяке дисперсне середовище, яке під дією вібрації піддається деформаціям зсуву. Доведено, що текучість цементно-піщаного розчину підвищується із зростанням швидкості деформацій зсуву. Значить, під дією вібрації падає диссипативний опір деформаціям бетонної суміші.
Одним з домінуючих чинників, що впливають на процес вібраційного ущільнення бетонної суміші, є інерційні сили, діючі на її частинки. Ці сили є причиною виникнення відносних прослизань частинок бетонної суміші і в сукупності з силою тяжіння, діючої на частинки, забезпечують її ущільнення. Значить, чим вище прискорення коливань випромінюючих поверхонь, тим більше інерційні сили, діючі на частинки, і тим повніше протікає процес ущільнення бетонної суміші. Проте встановлено, що коли вектори прискорень нормальні до випромінюючої поверхні, і їх максимальні значення перевершують 6...7 g, інерційні сили, діючі на частинки, робляться такими великими, що долають сили адгезіонного зчеплення між бетонною сумішшю і випромінюючою поверхнею в ті інтервали часу, коли вони направлені від неї. При цьому виникає розрив між бетонною сумішшю і випромінюючою поверхнею, який приводить до підсосу повітря, тобто до ущільнення бетонної суміші.
П.И. Новосельский і В.В. Шестоперов експериментально довели, що адгезіонні сили мало залежать від складу сумішей і матеріалу випромінюючих поверхонь, тому можна вважати, що при прискореннях 6g відриву суміші ще не відбувається.
При дотичних коливаннях випромінюючої поверхні по відношенню до бетонної суміші можливість таких розривів виключається, що дає можливість дещо інтенсифікувати процес ущільнення шляхом підвищення розмахів прискорення випромінюючої поверхні.
Ефективність ущільнення бетонної суміші великою мірою залежить від того, що розташовує по відношенню до неї випромінюючій поверхні. Якщо випромінююча поверхня є площиною і розташовується зверху на бетонній суміші, таке ущільнення називають поверхневим. Якщо випромінююча поверхня (звичайно циліндрова) розташовується усередині масиву бетонної суміші, ущільнення називають глибинним. Якщо конфігурація випромінюючих поверхонь повторює конфігурацію виробу, тобто є формою, і бетонна суміш розташовується над нижньою випромінюючою поверхнею (звичайно площиною, звану піддоном), а вся форма в цілому скоює який-небудь коливальний рух, який розповсюджується у всьому об'ємі бетонної суміші, що знаходиться в ній, ущільнення називають об'ємним. Воно забезпечує високий ступінь ущільнення бетонної суміші і набуло найбільше поширення у виробництві збірного залізобетону. З цієї причини розглянемо деякі специфічні особливості об'ємного ущільнення.
При коливаннях форми відрив суміші від її випромінюючих поверхонь, перпендикулярних напряму коливань, і пов'язані з цим підсос повітря і ущільнення суміші почнуться при вказаних вище значеннях прискорень (6...7g). Якщо форма скоює гармонійні коливання із заданою частотою?, те максимально допустиме значення її амплітуди коливань хаmax = 6g/ω.
При об'ємному ущільненні застосовують горизонтально і вертикально направлені коливання форми. При горизонтально направлених коливаннях форми ущільнення бетонної суміші здійснюється в основному за рахунок дотичних коливань піддону. Нормальна дія на бетонну суміш в цьому випадку походить лише від бортів торців форми, площа яких мала. Тому, як вже наголошувалося, при горизонтально направлених коливаннях може бути досягнута деяка інтенсифікація ущільнення бетонної суміші у разі формування тонкостінних виробів за рахунок підвищення прискорень форми. Ефективними шляхами підвищення прискорень є вживання бігармонічних і ударно-вібраційних коливань форми з бетонною сумішшю. Проте при будь-якій формі горизонтально направлених коливань вони повинні бути обов'язково симетричними, тобто прискорення при русі форми і в одну, і в іншу сторони повинні бути однаковими. Якщо симетрія коливань буде порушена, то виявиться транспортний ефект, і бетонна суміш почне переміщатися у бік менших прискорень, що неприпустимо, оскільки приведе до розшарування бетонної суміші і різностінності виробів.
При вертикально направлених коливаннях форми відрив суміші від піддону можливий лише в тій частині періоду її руху, коли інерційні сили, прикладені до частинок бетонної суміші, діють вгору. При дії ж інерційних сил на частинки вниз суміш притискається до піддону форми. Ця обставина відкриває перспективи інтенсифікації процесу ущільнення бетонної суміші за рахунок використовування асиметричних вертикально направлених коливань форми.
Для пояснення цього явища розглянемо сили, діючі на деякий об'єм бетонної суміші масою тб, що знаходиться на горизонтальній поверхні-піддоні, який скоює вертикально направлені коливання за законом x0 (t) (мал.6.2)
Мал.6.2. Схема сил, діючих на бетонну суміш, що знаходиться на площині, що скоює вертикально направлені гармонійні коливання
Рівняння руху цього об'єму можна записати у вигляді
(6.4)
Тут х - переміщення об'єму щодо піддону; перший член справа - інерційна сила, обумовлена коливаннями піддону; другий - вага частинки суміші; При русі частинок разом з піддоном х = 0, звідки нормальна реакція
(6.5)
Відрив частинки від піддону відбувається при N= 0, тобто при
(6.6)
Звідси видно, що відрив можливий лише при негативних прискореннях піддону. Експериментально встановлено, що відрив може відбутися в тому випадку, якщо
(6.7)
При відриві бетонної суміші від піддону в простір, що утворився, спрямовується повітря, яке потім перетворюється на бетонну суміш, що приводить до її ущільнення. Таким чином, для того, щоб не відбувалося ущільнення, негативні прискорення піддону не повинні перевершувати по модулю 7g.
Мал.6.3. Зразкові осцилограми прискорень при гармонійних і асиметричних коливаннях
При гармонійних коливаннях графік прискорення піддону симетричний (мал.6.3, крива 1), і максимальні значення позитивних і негативних прискорень рівні між собою. При асиметричних коливаннях (мал.6.3, крива 2) можна сформувати такі закони руху піддону, при яких максимум модуля негативного прискорення менше 7g, а максимум позитивних прискорень досягає 15-20 g.
Таким чином, при гармонійних коливаннях піддону для виключення відриву бетонної суміші необхідно обмежувати амплітуду прискорення, тоді як при асиметричних коливаннях достатньо обмежити по модулю лише негативні прискорення піддону. Позитивні ж прискорення можуть бути доведені до 20 g. В результаті виключається можливість відриву бетонної суміші від піддону, а великі інерційні сили, що притискують суміш до піддону, з одного боку, сприяють поліпшенню процесу ущільнення за рахунок виникаючого при цьому трамбуючого ефекту, і з другого боку, підвищують швидкості відносного проковзування частинок бетонної суміші, від яких, як відомо, залежить ступінь зниження її внутрішніх опорів, і, відповідно, якість ущільнення. Цим і пояснюється підвищена ущільнююча здатність машин з асиметричними коливаннями.
Асиметричні коливання робочих органів з необхідними співвідношеннями максимумів модуля позитивних і негативних прискорень найбільш просто досягаються в ударно-вібраційних ущільнюючих машинах шляхом відповідного підбору їх основних параметрів.
Випромінюючі поверхні робочих органів ударно-вібраційних машин здійснюють складні за формою коливання, які можуть бути представлені у вигляді суми гармонік, перша з яких ω1 (частота основного тону) рівна частоті ударів, друга ω2 = 2ω1, третя ω3 = 3ω1 і т.д., тобто в таких випадках говорять, що спектральний склад коливань збагатив вищими гармоніками, з яких перші 4...5 звичайно достатньо значущі. Ця обставина, з викладених вище причин, покращує ущільнення дрібнозернистих сумішей. Останніми роками завдяки своїй конструктивній простоті і високій ущіль