Концепция и принципы неклассического естествознания
Реферат
«Концепция и принципы неклассического естествознания»
1. Электромагнитное поле Фарадея-Максвелла, электромагнитное взаимодействие и принципы специальной теории относительности - теории пространства-времени Эйнштейна и Минковского
Классическая физика и соответствующее ей классическое естествознание завершились созданием термодинамики. На очереди стояли учения об электричестве и магнетизме, которые, казалось, должны были получить понимание в рамках традиционного классического мировоззрения. Однако этому не суждено было сбыться. Познание тайн электромагнетизма привело к началу нового этапа в физике, во всем естествознании и во всей науке — привело к этапу неклассической рациональности.
Новая рациональность начиналась еще в недрах классической рациональности фактически так. В XVIII веке французом Шарлем Кулоном (1736-1806) был открыт знаменитый закон взаимодействия точечных электрических зарядов — закон Кулона: , где q1, q2 — электрические заряды, r — расстояние между зарядами, k — коэффициент пропорциональности, определяемый выбором единиц измерения величин зарядов и расстояния. Закон Кулона, как видим, фактически совпадает, по виду и форме, с законом всемирного тяготения Ньютона, и это позволяло физикам многие годы думать, что электрическое взаимодействие сводимо к гравитационному тяготению. Но это было кажущееся совпадение. Экспериментальные исследования Гальвани (1737-1798) и Вольта (1745-1827) показали тесную связь электрических, химических (и даже биологических) явлений. Вопрос об отношении электричества и магнетизма оставался запутанным до открытия Эрстеда (1777-1851) в 1820 году, когда он случайно, в ходе лекционного демонстрационного эксперимента, обнаружил влияние, оказываемое электрическим током, пропускаемым по проволоке, на компас, оказавшийся вблизи от проволоки. С 1820 года интенсивной разработкой первой теории электромагнетизма — электродинамики, занялся французский ученый Ампер (1775-1836). Теория Ампера была создана по образу и духу «Начал» Ньютона, что позволило англичанину Джеймсу Максвеллу назвать французского ученого «Ньютоном электричества». Созданная Ампером электродинамика, основанная на представлении о мгновенной передаче электромагнитных взаимодействий (т. е. с бесконечной скоростью), должна быть отнесена к теориям типа теорий дальнодействия.
Однако последовательную, единственно признаваемую и сегодня, теорию электромагнитных явлений удалось построить лишь самому Максвеллу, который отказался от представления о дальнодействии й взял за основу в электромагнетизме идею о поле, выдвинутую впервые великим физиком-экспериментатором Майклом Фарадеем (1791-1867), который благодаря своим опытам доказал также тождественность различных видов электричества. Установленные Фарадеем законы электролиза доказывали выдающийся факт природы — дискретность электрического заряда. Начиная с 30-х годов XIX столетия, у Фарадея, под влиянием проводимых им экспериментов, начинает формироваться идея о передаче электромагнитных взаимодействий посредством поля. По мнению А. Эйнштейна, идея поля была самым важным открытием не только в физике, но во всей классической науке, со времен Ньютона (Эйнштейн тогда еще не подозревал, что электромагнетизм, эксперименты Фарадея и теория Максвелла дали начало новому этапу науки — неклассическому).
Ученым, который осознал глубину и оригинальность представлений Фарадея о поле на примере электромагнитного поля, стал именно Джеймс Максвелл (1831-1867). В 1865 году Максвелл опубликовал свою основополагающую работу «Динамическая теория электромагнитного поля», в которой он вывел математические уравнения теории поля — уравнения Максвелла. Одним из самых поразительных выводов электромагнитной теории Максвелла было указание на возможность распространения электромагнитных волн со скоростью света. Вывод Максвелла о том, что свет — электромагнитные волны, по праву считается вершиной его исследований в области электромагнетизма. Электромагнитная теория волн и поля позволяет наилучшим образом объяснить все явления, связанные со светом.
Специальная теория относительности. Есть одно замечательное явление в природе, которое сопровождает человека практически непрерывно да и, вероятно, обуславливает существование самого человека — это свет. Важное место в проблеме света занимал вопрос о его скорости, который не смогли прояснить ученые ни в античные, ни в средние века. Но вот Авиценна, например, полагал, что эта скорость хотя и весьма велика, но ограничена. Первую известную, но безуспешную попытку измерения скорости света сделал еще великий Галилей. Первое же успешное измерение скорости распространения света было проведено датским астрономом О. Ремером в 1676 году, использовавшим для этого экспериментальный факт запаздывания затмений спутников Юпитера, которое он объяснял конечностью скорости распространения света. В XIX веке некоторые физики развивали теорию эфира с целью объяснения природы распространения света в пространстве. Одновременно с этим проводились эксперименты по все более точному определению скорости света. В 1881 году американский ученый Альберт Майкельсон (1852-1931) вместе с помощником Морли, с помощью сконструированного ими интерферометра, определили скорость света с точностью до восьмого знака (т. е. с точностью до нескольких м/с, и это-то при величине скорости света около 300 000 тыс. км/с). У Майкельсона была определенная цель: подтвердить существование постулированного еще в античные времена эфира и обнаружить «эфирный ветер», следствием которого было бы различие в скорости света в разных направлениях по отношению к скорости движения Земли по околосолнечной орбите. Результат оказался отрицательным, под таким названием он известен в науке — отрицательный результат опыта Майкельсона.
Из опытов Майкельсона следовало, что для света не выполняется принцип сложения скоростей классической механики (вот это и есть первое противоречие канонам классической физики, в XX столетии их, этих противоречий, последует еще несколько), скорость света не зависит от скорости движения источника света. Например, согласно классической механике, скорость света от звезды, измеряемая по ходу движения Земли, должна быть 300030 км/с, а всегда получается 300000 км/с. Т. е. «с» плюс или минус «v», все равно получим «с».
Разрешить эту, на первый взгляд, неразрешимую проблему смог в 1905 году великий немецкий физик Альберт Эйнштейн, создавший для этого специальную теорию относительности (СТО) или так называемую релятивистскую механику, заменившую для быстрых, околосветовых скоростей классическую механику. В основу новой теории движения и пространства-времени Эйнштейном были положены два постулата:
ü Релятивистский принцип относительности — в любых инерциальных системах все физические процессы — механические, оптические, электрические и другие — протекают одинаково, или, в формулировке русского советского физика Владимира Фока, явления природы не зависят от неускоренного движения.
ü Принцип постоянства скорости света — скорость света в вакууме не зависит от скоростей движения источника и приемника, она одинакова во всех направлениях, во всех инерциальных системах отсчета. Иногда этот принцип интерпретируют как принцип существования предельной скорости распространения (например, В. Фок).
Позднее, в 1908 г., в теорию Эйнштейна внедрилась идея немецкого математика, выходца из России, Германа Минковского о том, что весь наш мир представляет собой четырехмерный пространственно-временной континуум событий. Иначе, такой континуум следует понимать как сплошное четырехмерное пространство-время мировых точек событий, в геометрическом представлении (описании) которого три измерения (размерности) ответственны за пространство и одно измерение (размерность) — за время. При таком выборе описания мировых событий частице, любому объекту соответствует так называемая мировая линия. Точки этой линии определяют координаты частицы во все моменты времени. Так, например, равномерно и прямолинейно движущейся материальной частице соответствует прямая мировая линия. Среди основных следствий СТО можно выделить такие:
а) продольные размеры движущегося тела всегда меньше размеров покоящегося;
б) движущиеся часы идут медленнее покоящихся часов (время замедляется);
в) события, одновременные в одной системе отсчета, никогда не будут одновременными в какой-либо другой системе;
г) одновременность — понятие относительное (имен но анализ понятия одновременности привел Эйнштейна к созданию СТО);
д) масса движущегося тела всегда больше массы покоящегося тела.
Новый вид и новую сущность приобретает теорема сложения скоростей V1 и V2; если в ньютоновой механике ее вид был V = V1 + V2, то в эйнштейновой он таков:
Видно, что если подставить в эту формулу самые предельные скорости с, то V будет равно с! Во всех остальных случаях
Таким образом, в этой новой теории пространства и времени утрачивают свою физическую абсолютность: традиционное евклидово (пифагорейское) расстояние, ньютоново время, ньютонова масса, ее импульс, энергия (но законы сохранения этих величин не нарушаются). Большинство отмеченных физических характеристик объектов оказываются чувствительны к отношению скорости их движения v к скорости света с — отношению v/c, так что все наблюдаемые и регистрируемые новые эффекты, называемые релятивистскими, возникают при приближении этого отношения к 1. Оказалось, что ничто материальное, т. е имеющее массу, не может достичь скорости света. В эйнштейновой релятивистской механике появилась самая знаменитая формула в мире, кстати, высеченная на надгробии Альберту Эйнштейну в Принстоне. Это формула для энергии массы т, известная практически всякому грамотному человеку, а именно, Е = тс2. Это вовсе не энергия движения массы т, поскольку, повторим, никакая масса не может достичь скорости света с, это некая запасенная энергия этой массой, характеризующая ее потенциальные энергетические возможности. При определенных условиях эта энергия вся, без остатка, может превратиться в энергию излучения либо кванта электромагнитного поля Е = hn, либо кванта какого-то другого поля. Такие возможности возникают при реакции аннигиляции любых частиц и античастиц, например, при лобовом столкновении электрона и позитрона.
Рассмотренная эйнштейнова формула энергии парадоксальна (или противоречива) тем, что масса т в ней умножается на квадрат скорости света с, скорости, которой она сама никогда достичь не может. Поскольку скорость света есть предельная, универсальная скорость в мировом пространстве (во Вселенной), то очевидно, что и сама масса есть проявление (следствие) универсальных свойств мирового пространства и времени, так что ни масса, ни пространство, ни время не отделимы одно от другого и третьего, ни от одной из своих трехгранных сущностей. Их объединяющая фундаментальная взаимосвязь, их своеобразное родство, единство их общей природы качественно проявляется уже в СТО, что, кстати, до нас не отметил пока никто из интерпретаторов СТО. Эйнштейн доказал их физическую взаимосвязь математически, т. е. количественно, в общей теории относительности.
Основной, фундаментальный смысл СТО (как его определяет отечественный академик Анатолий Логунов) состоит в том, что все явления (физические, химические, биологические и пр.) протекают в четырехмерном пространстве-времени, геометрия которого псевдоевклидова. Псевдоевклидовой принято часто называть геометрию Минковского, в которой квадрат расстояния между двумя мировыми точками (он называется интервал) на какой-либо плоскости, например, с координатами ct и х, определяется не суммой их квадратов, как в геометрии Евклида, а их разностью. В дополнение существующих неевклидовых геометрий Лобачевского и Римана, геометрия Минковского стала еще одной, вновь созданной человеческим гением геометрией, которую физики стали использовать для познания явлений; и структуры природы.
Ценность и фундаментальность специальной теории относительности заключается в неограниченно глубоком влиянии СТО на физическое мировоззрение. В дальнейшем приведенные в соответствие со специальной теорией относительности физические теории стали называться релятивистскими. Например, есть классическая механика движущихся и покоящихся тел, и есть релятивистская механика этих тел, нерелятивистская и релятивистская квантовая механика и т. д.
2. Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения
О движении планет и тяготении. Следующая ветвь физического естествознания, приведшая к формированию новых идей неклассической рациональности — теория тяготения, получившая первоначальное развитие в работах самого Ньютона, основателя классической рациональности. Одно из наиважнейших физических взаимодействий — тяготение, оказывается напрямую связано с тайнами «звездного неба», которые пытливый человеческий ум хотел разгадать с древних времен. «Небеса» — Вселенная, ее структура, ее целостное мироздание, космос как общность всего мира — вот постоянная забота творческого человека. Вспомним первые модели мира. Не повторяя уже сказанного, отметим, что согласно мифологическим представлениям разных народов, например, древних египтян, Вселенная имеет вид большой долины, вытянутой с севера на юг, а в центре ее находится Египет. Византийский философ Козьма Индикоплевст (Индикоплов) в «Христианской топографии», созданной в 535 г. и получившей распространение в Древней Руси, писал, что Вселенная представляет собой «ящик», небесный свод которого поддерживается четырьмя стенами, а внутри, со всех сторон окруженная океаном, находится Земля с огромной горой. Хорошо известно, что один из самых выдающихся древнегреческих мыслителей Гераклит Эфесский еще в V в. до н. э. провидчески полагал иначе: «Мир, единый из всего, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющимся и закономерно угасающим...» Примеры мифов и догадок разных школ и эпох можно множить и множить.
Первую математическую систему (теорию) строения мира — Вселенной, объясняющую движение планет (звезды казались неподвижными) создал греческий астроном, математик и философ Евдокс Книдский (400-347 гг. до н. э.). Уместно также напомнить, что представление о равномерном круговом движении небесных тел (планет), самом совершенном из всех возможных движений, как тогда считалось, поддерживали величайшие мыслители античности Платон и Аристотель. Почти две тысячи лет, со II в. н. э., в античной и средневековой науке просуществовала геоцентрическая модель мира Птолемея, основанная на идеях Евдокса, Каллипа, Платона, Аристотеля, Эратосфена, Аполлония Пергского и Гиппарха. Но два ключевых концептуальных положения этой картины были ошибочными — первое, Евдокса, что Земля занимает центральное положение среди известных небесных тел, и второе, Аристотеля, о том, что тела свободно падают тем быстрее, чем больше их вес. О том, что причина этому явлению - тяготение, никто тогда из мыслителей не знал, не говорил и так не думал. Первое положение основывалось на предубеждении об исключительном положении Земли в мироздании, второе — на убеждении в непререкаемую правоту Аристотеля; каждое положение казалось незыблемым, но по прошествии многих веков, они были все-таки опровергнуты, что лишний раз подтверждает тезис Карла Поппера о прогрессе науки в результате исключения фальшивых гипотез. В ошибочности идеи Аристотеля о характере падения тел первым аргументировано стал сомневаться грек Иоанн Филопон из Александрии в VI в., позднее — англичанин Томас Брадвардин (ок. 1290-1349) из Оксфорда, француз Жан Буридан (ок. 1300-1360). Окончательно эту идею опроверг Галилей, осуществив первый в истории науки эксперимент, наблюдая падение различных тел с Пизанской башни.
Положение же о геоцентирической модели птолемеевой картины мироздания было опровергнуто лишь Николаем Коперником в XVI веке. В его книге «Об обращениях небесных сфер» (1543 г.) была изложена новая система мира, которая в дальнейшем получила название коперниковой или гелиоцентрической. Солнце («центральный огонь» в пифагорейской и др. идеологиях) в этой модели заняло центральное положение среди известных планет, законы движения которых были несколько позднее, в начале XVII в., открыты Иоганном Кеплером на основе обработки крупных массивов эмпирических наблюдений астрономов за предшествующие века, среди которых особое место занимали астрономические наблюдения датского астронома Тихо де Браге за планетой Марс. Природа движения планет, да и всех других небесных тел, состояла в тяготении всех масс друг к другу, как это впервые показал Исаак Ньютон. Ньютонов постулат тяготения состоял в прямой пропорциональности силы тяготения величинам тяготеющих масс, т. е. произведению масс, и обратной квадратичной пропорциональности расстояния между ними. Закону этому самим Ньютоном была придана всемировая общность, в результате чего он получил название закона всемирного тяготения. Это один из самых известных людям всемирных законов природы (такую же беспрецедентную известность имеет закон взаимодействующих электрических зарядов Шарля Кулона). Вместе с тем так в естествознание впервые проникло представление о взаимодействии, порождающем или даже заменяющим силу, — представление о тяготении. Это взаимодействие давно принято называть гравитационным, и, как мы знаем сейчас, оно наислабейшее из всех известных на сегодня взаимодействий, но, не в пример другим, имеет неограниченный радиус действия и, как оказалось, по природе, самое сложное из них.
Ньютоновское тяготение поистине универсально (от лат. universum — «мир как целое», «все сущее», Вселенная и universalis — общий, всеобщий). Оно положило конец взглядам древних греков и идеям средневековья о принципиальном отличии законов природы на Земле и на небе. Но непонятой и непонятной оставалась природа самого тяготения, действующего через пустоту. Это отчетливо понимал и сам Ньютон. В связи с этим почти всегда цитируют часть следующего отрывка из письма Ньютона от 25 февраля 1693 г. д-ру Бентли: «Непостижимо, — пишет Ньютон, — чтобы неодушевленная, грубая материя могла без посредства чего-либо нематериального действовать и влиять на другую материю без взаимного соприкосновения, как это должно бы происходить, если бы тяготение в смысле Эпикура было существенным и врожденным в материи. Предполагать, что тяготение является существенным, неразрывным и врожденным свойством материи, так что тело может действовать на другое на любом расстоянии в пустом пространстве, без посредства чего-либо передавая действие и силу, — это, по-моему, такой абсурд, который немыслим ни для кого, умеющего достаточно разбираться в философских предметах. Тяготение должно вызываться деятелем, постоянно действующим по определенным законам. Является ли, однако, этот деятель материальным или нематериальным, решать это я представил моим читателям».
В этом состояло и состоит своеобразное завещание Ньютона и своим современникам и последующим поколениям потомков, в данном случае нам. Пока мы эту задачу в полной мере не решили, но определенные достижения, благодаря великим математикам Николаю Лобачевскому (1793-1860), Бернхарду Риману (1826-1886) и физику Альберту Эйнштейну, имеем.
О неевклидовых геометриях Лобачевского и Римана. Во все предыдущие века математики и физики углубленно размышляли над проблемой геометрии физического пространства и связи его с природой физических явлений. На протяжении более чем двух тысяч лет в науке, прежде всего в математике, господствовала геометрия Евклида (ок. 330 - ок. 272), и, одновременно, она же первая теория физического пространства. Но одна из аксиом геометрии Евклида — аксиома о параллельных прямых, она же трактуется также как V (пятый) постулат Евклида, беспокоила многих математиков своей, в отличие от других аксиом, сложностью формулировки.
Сам Евклид Александрийский, живший и творивший в царствование Птолемеев I и II, туманно сформулировал этот постулат: «Если прямая, падающая на две прямые, образует внутренние и по одну стороны углы меньше двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых». Несколько позднее в передаче античного философа Прокла этот постулат звучал определеннее: «Если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую прямую», но математик Дж. Плейфер (1748-1819), выразил постулат еще проще, придав ему знаменитый школьный вариант: «Через данную точку можно провести лишь одну параллельную прямую к данной прямой».
Начиная с античных времен, многие математики делали тщетные попытки доказать или опровергнуть аксиому о параллельных прямых. Наиболее выдающимся среди математиков, размышлявшим над этой проблемой, был Карл Фридрих Гаусс (1777-1855). В 1813 году Гаусс разрабатывал свой вариант неевклидовой геометрии, но так и не опубликовал ни одной работы, связанной с разрешением этой проблемы, хотя, как отмечают историки математики, ответ он знал, но парадоксальностью этого ответа боялся подорвать свой авторитет великого математика. Слава создателя неевклидовой геометрии принадлежит великому русскому математику Николаю Лобачевскому. Венгерский математик Янош Больяи (1802-1860) разработал свои идеи по неевклидовой геометрии независимо от Лобачевского и несколько позднее.
Лобачевский первым доказал в 1826 г., что аксиома Евклида о параллельных прямых не может быть непротиворечиво согласована с остальными аксиомами евклидовой геометрии, так называемыми аксиомами сочетания, порядка, движения и непрерывности.
Отвергнув аксиому Евклида о параллельных прямых, Лобачевский ввел свою аксиому параллельности, в которой допустил, что через точку, лежащую вне заданной прямой, можно провести не одну, а по крайней мере две (в принципе бесконечное количество) прямых, не пересекающих данную прямую. Это бесконечное множество прямых линий, проходящих через эту точку, ограничено двумя прямыми, которые и считаются параллельными данной прямой. На основе этого допущения Лобачевский построил неевклидовую геометрию, в которой много необычных с точки зрения приверженцев геометрии Евклида выводов. Так, например, математики Ф. Клейн и А. Пуанкаре показали, что за плоскость Лобачевского может быть принята внутренность круга, а за пространство -внутренность шара, тогда как еще несколько раньше, в 1876 г., итальянский математик Э. Бельтрами показал, что геометрии Лобачевского соответствует псевдосфера. Прямыми, согласно Пуанкаре, в этих моделях считаются дуги окружностей, перпендикулярные окружности данного круга. Модель Пуанкаре замечательна тем, что в ней углы Лобачевского изображаются обычными углами. Аналитическое определение геометрии Лобачевского состоит в том, что это есть геометрия пространства постоянной отрицательной кривизны (типа поверхности седла, устанавливаемого на круп лошади). Как следствие этого, сумма углов треугольника в геометрии Лобачевского всегда меньше 180° и стремится к 180° с уменьшением площади треугольника (т. е. сумма углов треугольника в геометрии Лобачевского пропорциональна площади треугольника!). В этой геометрии нет подобных и не конгруэнтных (неравных) треугольников; треугольники равны, если их углы равны, и т. д.
Образ пространства Лобачевского можно условно выразить, представив себе гору неограниченной высоты с идеальными склонами по всей долготе и с гладкой вершиной. С этой вершины тело может соскользнуть вниз по бесконечному числу путей, и ни один из этих путей не пересечется, так что мы имеем в этом случае бесконечное число параллельных (непересекающихся) линий движения.
Одно из важнейших следствий неевклидовой геометрии Лобачевского состоит также в том, что она способна описывать свойства физического пространства ничуть не в меньшей, если не в большей мере, и, возможно, даже более точно, чем евклидова геометрия. Например, много позднее в теории тяготения было показано, что если считать распределение масс во Вселенной равномерным, то физическое пространство такой Вселенной имеет геометрию Лобачевского, Необходимость и достаточность евклидовой геометрии как геометрии физического пространства ниоткуда не следует и никем никогда не была доказана; истинность той или иной геометрии может быть установлена только опытным путем (это ясно понимал сам Лобачевский, стремясь найти эмпирические основания своей геометрии).
Проблема выбора геометрии, наиболее соответствующей реальному физическому пространству, исследовалась в дальнейшем, уже после Лобачевского, самым великим из учеников Гаусса, Бернхардом Риманом. Риман первым поставил вопрос: что нам достоверно известно о пространстве? Одна из целей Римана состояла в доказательстве того, что аксиомы Евклида являются эмпирическими, а не очевидными истинами. Риман избрал аналитический подход, поскольку геометрические доказательства не свободны от чувственного опыта, «здравого смысла», способного привести к ошибочным заключениям.
Риман, в результате продолжительных поисков адекватного описания свойств физического пространства, пришел к мысли, что описание пространства должно быть локальным (от лат. localis — местный), ибо свойства пространства могут изменяться от точки к точке (от места к месту). Квадрат расстояния ds между двумя бесконечно-близкими точками в пространстве (в котором введена система координат x1, х2, х3) может быть представлен в виде некоторой двойной суммы по индексам i и к = 1, 2, 3:
где — так называемый метрический тензор, по сути, это некоторая квадратная таблица, ее называют матрица, состоящая в данном случае из 9 = 3 х 3 компонентов (элементов), каждый из которых есть определенная функция пространственных координат x1х2 х3.
Таким образом, компоненты метрического тензора характеризуют локальные (местные) свойства пространства. В принципе, вышеприведенная формула есть не что иное, как обобщение на трехмерный случай известной всем теоремы Пифагора, справедливой в своей знакомой форме в евклидовой геометрии в виде:
В этом частном случае компоненты матрицы метрического тензора равны 0 и 1. Единицы расположены на диагонали матрицы (число этих компонентов матрицы — 3), 0 расположены вне диагонали, и число их равно 6.
В любой геометрии существенное положение занимает вопрос о прямых или кратчайших линиях, соединяющих какие-либо две точки пространства. Так вот, в римановой геометрии, являющейся в простейшем случае геометрией двумерной сферы в трехмерном евклидовом пространстве, с отождествленными диаметрально противоположными точками, прямыми являются большие круги сферы. В результате любые две прямые пересекаются, плоскость не разделяет пространства, само пространство имеет положительную постоянную кривизну (у Лобачевского — постоянную отрицательную) и т. д.
Риман высказал гениальное предположение, что свойства физического пространства должны зависеть от происходящих в нем физических явлений. В дальнейшем эту идею Римана поддержал ирландский математик Уильям Клиффорд (1854-1879). Клиффорд высказал частное предположение, что гравитационные эффекты, возможно, обусловлены кривизной пространства. Гипотезы Римана и Клиффорда дождались своего часа только в XX веке, с появлением общей теории относительности Эйнштейна. Что же предопределило, в конечном итоге, необходимость в новой теории пространства и тяготения.
Принцип эквивалентности Эйнштейна. 10 лет упорной работы (с 1905 по 1915 гг.) понадобилось Эйнштейну, чтобы появилось одно из самых выдающихся научных творений человечества — общая теория относительности (ОТО) или теория тяготения Эйнштейна, которая связала тяготение и массу (как физические явления) с геометрией пространства и времени, обусловила их совместное сосуществование.
Краеугольный камень теории был заложен в 1907 г., когда Эйнштейн сформулировал принцип эквивалентности инертной и тяготеющей масс. Принцип этот есть дальнейшее современное развитие утверждения Галилея (ничто в науке не делается без предшественников) о том, что в гравитационном поле все тела независимо от их массы приобретают одинаковые ускорения (но не так, как полагал об этом Аристотель). В мысленном эксперименте Эйнштейн обратил внимание, что наблюдатель, находящийся в закрытой (без окон) кабине, не в состоянии отличить влияние тяготения от эффектов ускоренного движения. В неподвижной кабине на Земле и в ней же, движущейся в свободном космическом пространстве, например, в ракете, с ускорением, равным земному ускорению падения, все предметы совершенно одинаково ускоряются по направлению к полу кабины. Значит, эффекты гравитации и ускоренного движения неразличимые Почему? С чем связывать природу такой неразличимости, тождественности?
Представим, и это есть второй мысленный эксперимент Эйнштейна, что мы находимся теперь в закрытом (снова без окон) лифте. Если трос лифта вдруг оборвется, то и сам лифт, и все предметы в нем, и наблюдатель, в том числе, начнут свободно и все с одинаковым ускорением падать под действием поля тяготения Земли. Наблюдатель не будет в этом случае чувствовать давления на пол лифта, т. е. не будет чувствовать своего веса, испытывая ощущение невесомости. Никакие эксперименты, проводимые в лифте, не позволят наблюдателю определить, падает ли он вместе с лифтом или свободно парит в космическом пространстве вдали от поля тяготения Земли (здесь мы имеем дело с обобщением принципа относительности на ускоренные системы). Из этого эксперимента Эйнштейн установил эквивалентность тяготения ускоренно движущимся системам отсчета — эффекты тяготения можно создавать или устранять, выбирая подходящие системы отсчета. В таком падающем лифте справедливы законы механики, а это значит, что ускоренные тела представляют собой локальные инерциальные системы отсчета (локальными считаются как ограниченный в размерах лифт, так и его ограниченное местоположение в пространстве). Тем самым Эйнштейн распространил концепцию инерциальной системы на все свободно падающие системы отсчета и отказался от их отождествления с абсолютным ньютоновым пространством (вот здесь-то и не понадобились пространства неевклидовых геометрий). Кроме того, Эйнштейн уточнил концепцию локальной системы и принципа эквивалентности, полагая, что они справедливы только в достаточно малых областях пространства, где силу тяжести можно считать постоянной (как это имеет место вблизи поверхности Земли).
Следствия принципа эквивалентности: отклонение лучей света и красное смещение. Возможны поразительные наблюдаемые следствия мысленных экспериментов Эйнштейна, составляющие концептуальные основы современных представлений о пространстве, времени и тяготении.
Если эффекты тяготения и ускоренного движения неразличимы, то лучи света должны отклоняться гравитационным полем, а свет, испускаемый тяготеющей массой (звездой), должен испытывать так называемое красное смещение, свет же, падающий на тяготеющую массу, будет испытывать фиолетовое смещение. Снова мысленно вернемся в падающий лифт. Поскольку в нем действует невесомость, т. е. нет проявления сил, то любое движение, согласно принципу Галилея, сохраняет в нем свое состояние, например, полет горизонтально брошенного поперек падения тела совершается горизонтально (прямолинейно). Это же справедливо и по отношению к лучу света. Однако наблюдается другая траектория полета луча, искривленная, как у снаряда, выпущенного из пушки, если смотреть на это извне. Действительно, любой объект с точки зрения внешнего наблюдателя участвует сразу в двух движениях: в горизонтальном и вертикальном, что ведет, как впервые еще установил Галилей, к параболической траектории. Как бы не было мало отклонение светового луча из-за колоссальной скорости его распространения, принципиально оно должно быть, и причина тому — принцип эквивалентности. Таким образом, лучи света, проходя вблизи массивных тел (звезд, Солнца), должны отклоняться от первоначального направления распространения.
Теперь с позиций принципа эквивалентности рассудим о доплеровском эффекте для светового луча, испущенного из области с мощным гравитационным полем (например, испущенного звездой). Пусть в падающем лифте свет был направлен вверх. Тогда внешний наблюдатель, смотрящий вслед удаляющемуся лифту (фактически вслед удаляющемуся источнику света), будет регистрировать как бы растяжение волны, ее удлинение, т. е. сдвиг в сторону красной части спектра, что называется красным смещением. И, напротив, если направить луч в падающем лифте вниз и смотреть навстречу лучу, то частота принятого луча света возрастет (волна сожмется, как пружина под действием сжимающей ее продольной силы) и свет испытает для наблюдателя фиолетовое смещение.
Тяготение как следствие искривленного пространства-времени. Общая теория относительности. Согласно общей теории относительности, свойства пространства-времени обусловлены находящейся в ней материей, что проявляется в наличии кривизны пространства-времени. Чем больше массы тел, тем более искривлено пространство вокруг. И, наверное, один из самых интересных выводов ОТО заключается именно в том, что не существует каких-то особых сил тяготения, над природой которых безуспешно размышлял великий Ньютон, поскольку тяготение определяется искривлением пространства-времени. Тела в искривленном пространстве-времени движутся свободно, по так называемым геодезическим линиям, линиям наикратчайшего расстояния между точками пространства. Американский физик Арчибальд Уилер дал такую меткую характеристику ОТО: «Вещество говорит пространству, как тому искривляться, а пространство говорит веществу, как тому двигаться».
Сформулируем широко известный ряд основных выводов ОТО:
ü Свойства пространства-времени зависят от материи.
ü Лучи света должны представлять собой в общем случае не прямые линии, а кривые. Искривление лучей света должно быть сильнее вблизи тел с большей массой.
ü Частота света, испущенного неким источником (звездой), должна изменяться от точки к точке в пространстве. В частности, линии солнечного спектра под действием гравитационного поля Солнца должны смещаться в сторону красного света, по сравнению со спектрами соответствующих химических элементов на Земле.
Сформулированные выше выводы теории тяготения можно получить качественно на основе следующего, предлагаемого нами мысленного эксперимента. Представим себе плоское (евклидово) пространство. Внесем в него материальное тело, которое своим присутствием непременно должно привести к искажению единственного свойства этого евклидова пространства быть плоским, и этим тоже единственным искажением может быть только его искривление. Следовательно, в таком искривленном пространстве исчезает, как таковое, движение по евклидовым прямым, образом которого (образом прямой линии) является движение луча света. Тогда получаем, что луч света уже никогда не распространяется по прямой, а только по искривленной линии. Впрочем, и любое тело теперь уже не движется по прямой линии, а только по кривой. Более того, ни одна линия в таком случае не может быть замкнутой в евклидовом смысле, так что, например, ни одна планета не возвращается в исходную точку своей траектории. Далее, ни одно периодическое движение (того же света, электромагнитной волны другой частоты) не сохраняет своей периодичности (частоты) при распространении в искривленном поле тяготения. Сами же, и реально