Радиация и человек
Федеральное агентство по образованию РФ
ГОУ ВПО “Марийский государственный педагогический институт им. Н.К.Крупской”
Кафедра физики
Курсовая работа
Радиация и человек
Работу выполнила:
ФИО
студентка 32 гр.
Научный руководитель:
ФИО
к.ф.-м.н., доцент
Йошкар-Ола
2008
Содержание
Введение. 3
Естественный фон ионизирующих излучений. Внешнее и внутреннее облучение 7
Космическая радиация. 8
Земная радиация. 11
Особенности внешнего и внутреннего облучения. 14
Ионизирующая радиация в повседневной жизни. 18
Особенности действия радиации на организм человека. 23
Острая лучевая болезнь. 25
Охрана здоровья людей от вредного действия ионизирующей радиации. 27
Заключение. 33
Литература. 39
Вселенная, мировое пространство пронизано лучистой энергией. Если скопления материи в виде звезд, планет, блуждающих комет и метеоритов в масштабах Вселенной – редкие явления, то потоки лучей, порождаемые ими, наполняют все пространство. В каждой его точке ежесекундно можно обнаружить потоки излучений – радиацию. Огромные массы вещества в недрах звезд, вступая в ядерные реакции, превращаются в лучистую энергию, выделяемую в окружающее пространство. Вспышки новых звезд, рождение и гибель галактик, сжатие и концентрация вещества при затухании звезд и другие еще далеко не познанные, но постоянно происходящие во Вселенной превращения материи сопровождаются огромными выбросами лучистой энергии в виде электромагнитных колебаний всех диапазонов и потоков элементарных частиц и корпускул, начиная от неуловимого нейтрино и кончая тяжелыми ядрами атомов.
Человечество с глубокой древности знало только о сравнительно небольшой части спектра электромагнитных излучений – узкой полосе видимого света. Благотворное влияние солнечного света, под живительными лучами которого поспевают урожаи на полях, стало первым знанием человека о зависимости жизни на Земле от лучистой энергии Солнца. Прошло много столетий, прежде, чем человечество поняло, что вся энергия, используемая при сжигании дров, нефти, каменного угля – это лучистая энергия Солнца, аккумулированная земной растительностью.
Зрение, позволяющее воспринимать всю красоту и многокрасочность окружающего мира и ориентироваться в пространстве, также исследуется в течение столетий. В настоящее время хорошо известны и оптическое устройство глаза, и тонкие фотохимические реакции, преобразующие кванты света в нервные импульсы. Мы знаем и о замечательном устройстве зрительных центров в центральной нервной системе, позволяющем с огромной скоростью анализировать интенсивность, длины волн и пространственное расположение потоков квантов, падающих на сетчатку глаза.
Область невидимых излучений лежит как в стороне более длинных, так и более коротких волн. Диапазон радиоволн только начинает интересовать биолога. Еще не ясно, воздействуют ли они на живые системы. Все больший интерес вызывают сантиметровые и миллиметровые волны. В последние годы стали накапливаться факты об их воздействии на биологические объекты. Использование этих излучений в промышленности возрастает, поэтому их возможное влияние на человека – вопрос, имеющий не только теоретический интерес. Ультракороткие и инфракрасные волны оказывают тепловое воздействие на ткани организмов, что широко используется в медицинской практике и сельском хозяйстве. Не менее интересна и область корпускулярных ионизирующих излучений, таких, как α- и β- лучи радионуклидов, потоки электронов и протонов, генерируемые современными ускорителями, нейтроны атомных реакторов или π-мезоны и ядра тяжелых нуклидов – космических лучей. Корпускулярные излучения обладают высокой энергией, часто большой проникающей способностью, активно взаимодействуют с атомами и молекулами живых организмов, вызывая ионизацию, образование высокореактивных свободных радикалов, ядерные реакции. Все это может иметь глубокие последствия для жизнедеятельности клетки, ткани, организма. Ввиду сходства воздействия на вещество корпускулярных и таких электромагнитных излучений, как рентгеновские и γ-лучи, их часто объединяют в группу ионизирующей радиации.
При каждом таком акте распада высвобождается энергия, которая и передаётся дальше в виде излучения. Испускание ядром частицы, состоящей из двух протонов и двух нейтронов, как в случае распада U238, называется α-излучением; испускание электрона, как в случае распада тория-234, называется β-излученим и т.д. Различные ядра высвобождают свою энергию различными способами, в форме электромагнитных волн и/или потоков частиц. Разные виды излучения сопровождаются высвобождением разного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма.
α -излучение представляет собой поток тяжелых частиц положительно заряженных ядер гелия, состоящих из двух протонов и двух нейтронов, испускаемых атомами таких тяжелых элементов, как уран, радий, радон и плутоний. В воздухе альфа-излучение проходит не более пары сантиметров (наиболее высокоэнергетические альфа-частицы могут пройти слой воздуха при нормальном атмосферном давлении не более 11 см или слой воды до -150 мкм) и полностью задерживается листом бумаги или эпидермисом, внешним омертвевшим слоем кожи. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие альфа - частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными. Альфа-излучение в 20 раз опаснее гамма-излучения.
Бета-излучение - это электроны, которые значительно меньше альфа-частиц и могут проникать в ткани организма через кожу на 1-2 см. Оно может быть задержано листом металла, оконным стеклом, обычной одеждой. Бета-излучение поражает незащищенную кожу и глаза. Если частицы, испускающие бета-излучение, попадут в организм, они будут облучать внутренние ткани.
Гамма-излучение - это электромагнитное излучение высокой энергии, которое обладает большой проникающей способностью, изменяющейся в широких пределах. Ионизирующая способность гамма-излучения значительно меньше, чем у альфа- и бета- частиц. С того момента, как гамма-излучение попадает в вещество, его интенсивность начинает снижаться. На своем пути оно повсеместно сталкивается с атомами. Такое взаимодействие с клетками тела может повредить кожу и внутренние ткани. Плотные материалы, такие, как свинец, бетон, являются отличными барьерами на пути гамма-лучей.
Рентгеновское излучение - аналогично гамма-излучению, испускаемому ядрами, но оно получается искусственно в рентгеновской трубке, которая сама по себе не радиоактивна. Поскольку рентгеновская трубка питается электричеством, то испускание рентгеновских лучей может быть включено или выключено с помощью выключателя.
Нейтронное излучение обладает высокой проникающей способностью, поэтому наносит вред всем органам, но наиболее чувствительным к нейтронному излучению является хрусталик глаза. Нейтроны проникают глубже, чем гамма-лучи и могут быть остановлены только толстым бетонным, водяным или парафиновым барьером.
В качестве единицы измерения поглощенной ионизирующей радиации в современной единой системе единиц принято такое ее количество, которое соответствует энергии в 1Дж, поглощенной 1 кг ткани. Эта единица получила название грей (Гр) в честь крупного английского радиобиолога Л.Грея. В качестве единицы измерения ионизирующей радиации чаще используют величину в 100 раз меньшую – рад.(1)
Также введена величина эквивалентной дозы, измеряемая в зивертах (1 Зв = 1 Дж/кг). Зиверт представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиоактивную опасность для организма разных видов ионизирующего излучения.
Для оценки эквивалентной дозы применяется также единица БЭР (биологический эквивалент рада): 1БЭР = 0,01 Зв.
Естественный фон ионизирующих излучений. Внешнее и внутреннее облучение
Где бы мы ни находились – на знойном юге или на далеком севере, в долинах или высоко в горах, на свежем воздухе или в помещении, на отдыхе в санатории или на работе, окруженные современной техникой, на пароходе, в поезде или в самолете – наше тело постоянно пронизывается высокоэнергетическими фотонами и корпускулами ионизирующей радиации. Падая на организм извне, они проникают во все ткани и органы, где отдают свою энергию молекулам и структурам клеток.
В большом количестве они зарождаются внутри нашего тела от находящихся в нем радиоактивных веществ, и тогда вероятность их поглощения тканями повышается. Речь идет о высокоэнергетических фотонах и частицах. Их энергия во много раз превышает энергию любой химической связи в молекуле. Столкновение таких частиц с молекулами нашего тела – это, как правило, катастрофа для молекулы: она распадается, меняет свою конфигурацию, теряет одни свойства и приобретает совсем иные.
Расчеты показывают, что каждую секунду в организме человека весом в 70 кг в среднем происходит около 500 тыс. таких молекулярных катастроф, 500 тыс. столкновений молекул с ионизирующими частицами, сопровождающихся временным или постоянным изменением свойств этих молекул.
Облучение от естественных источников ни на минуту не останавливается: секунды, минуты, часы, дни, годы непрерывно идет эта микробомбардировка наших клеток. Ее последствия только за последние годы становятся ясны благодаря многочисленным радиобиологическим исследованиям. И, как часто бывает в науке, то, что казалось очевидным еще несколько лет назад, приобретает новое освещение в свете полученных фактов. Если в 40-х и даже в начале 50-х годов ученые имели вообще очень смутные представления о естественном фоне радиации, то теперь уже ясно, что его нельзя игнорировать, обсуждая такие проблемы, как происхождение жизни, эволюция, старение, канцерогенез и многое другое. Мы различаем внешнее облучение от источников, расположенных вне организма, и внутреннее – от инкорпорированных, т.е. включенных в организм радиоактивных нуклидов. Внешнее облучение слагается из облучения вторичными космическими лучами, достигающими биосферы Земли, и излучениями радионуклидов, рассеянных в окружающих нас земных породах и строительных материалах.
Из недр мирового пространства, от звезд нашей галактики, а возможно и других галактик, в межпланетное пространство постоянно направлен поток первичных космических лучей, состоящий из высокоэнергетичных протонов, ионов гелия, тяжелых частиц, электронов, фотонов и нейтрино. Значительный вклад в этот поток вносит и наше Солнце, испускающее, помимо видимого света, мощное ультрафиолетовое излучение и поток высокоэнергетичных протонов.
Первый барьер, с которым сталкиваются космические лучи на пути к биосфере, - магнитное поле Земли, отклоняющее заряженные частицы космической радиации, не дающее им даже достичь верхних слоев атмосферы. Отклоненные магнитным полем частицы как бы обтекают нашу планету на расстоянии от одного до восьми земных радиусов, образуя радиационные пояса с большой интенсивностью облучения. (Радиация в этих поясах обусловлена электронами и протонами с энергиями от десятка кэВ до сотен МэВ.) Радиационные пояса Земли, представляющие большую опасность для космонавтов (полеты с людьми всегда планируются с расчетом минимального пребывания в пространстве радиационных поясов), не влияют на радиационную обстановку на земной поверхности.
Магнитное поле Земли создает мощную защиту нашей планеты от галактической космической радиации. Мощную, но не абсолютную. Часть высокоэнергетичных лучей прорывается через магнитные поля и постоянно бомбардирует верхние слои атмосферы. Исследования, проведенные на ракетах и спутниках, показали, что мощность такого облучения закономерно изменяется в связи с 11- летним солнечным циклом.
Причину подобных изменений выяснил английский исследователь Е.Н.Паркер в 1966-1967 гг. Оказалось, что в годы солнечной активности усиливаются потоки плазмы, низкоэнергетичных протонов и электронов, испускаемых Солнцем, известные в астрономии под названием «солнечного ветра». Солнечный ветер оказывает влияние на магнитные поля Земли, усиливая их способность отклонять галактические космические лучи. Излучения солнечного ветра малоэнергетичны и также не пробиваются через магнитные поля. В годы усиленной солнечной активности вследствие увеличения магнитной защиты интенсивность космического облучения Земли снижается, и наоборот, наибольшая облученность Земли космической радиацией наблюдается в годы спокойного Солнца.
Высокоэнергетичные (40-100 МэВ) космические лучи, прошедшие через магнитное поле, врываются в атмосферу. Очень немногие из них проникают через всю атмосферу и достигают поверхности Земли. Большинство же, сталкиваясь с атомами азота, кислорода, углерода, атмосферы, взаимодействует с ядрами этих атомов, и, образно выражаясь, разбивает их вдребезги, рождая множество новых частиц: протонов, нейтронов, π-мезонов (пионов), μ-мезонов (мионов)(3), образующих вторичное космическое излучение. Так как эти частицы тоже обладают энергией в десятки МэВ, то, сталкиваясь с другими ядрами, они порождают новые потоки излучений, образуя каскад вторичных космических лучей.
Часть нейтронов захватывается ядрами азота, образуя радиоактивный углерод С14. Мионы легко проникают в нижнюю часть атмосферы и доходят до поверхности Земли, составляя космическую часть естественного фона радиации.
На уровне моря вторичные космические лучи в виде потока нейтронов, мионов и электронов составляют около 30% от всего облучения биосферы. С высотой доза облучения от космических лучей значительно возрастает. Для жителей гор (1,5-2 км над уровнем моря) она почти в два раза выше, чем для жителей равнин. На высоте 10 км, на которой проходят трассы современной реактивной авиации, облученность космической радиацией уже на порядок выше, чем на уровне моря. На высоте 20 км она возрастает более чем на два порядка.
Эта высота интересна с двух точек зрения:
На такой высоте будут летать в ближайшем будущем пассажирские сверхзвуковые самолеты. Следует отметить, что на такой высоте резко увеличивается количество высокоэнергетичных тяжелых частиц, почти не достигающих поверхности Земли. Радиация от солнечных вспышек, фактически не влияющая на дозы облучения на поверхности Земли, на высоте 20 км будет резко увеличивать дозы облучения в сотни и даже в тысячи раз.
Высота в 20 км интересна и с другой точки зрения. В тропических широтах Земли мощные потоки нагретого воздуха уносят в верхние слои атмосферы значительное количество микроорганизмов, бактерий, спор, организмов морского планктона. Определение плотности органического вещества на разных высотах показало, что именно на высоте 15-20 км она достигает наибольшей величины – до 10 частиц (аэронов) на 1 см3. На этой высоте аэроны будут находиться 3-4 месяца, медленно передвигаясь в области средних широт. Принимая во внимание высокую мощность космических лучей, доза, полученная микроорганизмами, может достигнуть нескольких рад. В средних широтах облученные микроорганизмы войдут в нижние слои атмосферы и выпадут с осадками на поверхность Земли.
Глубокая проникающая способность вторичных космических лучей объясняется большой энергией. Вот почему так трудно избавиться от их постоянного воздействия. Для проведения экспериментов с резко пониженным космическим облучением физики оборудуют специальные лаборатории в туннелях, проложенных у основания высоких гор. В таблице представлены дозы облучения человека космическими излучениями в разных условиях существования.
Место пребывания | Доза за определенный отрезок времени, мрад | ||
Час | Месяц | Год | |
Средние широты на уровне моря | 0,04 | 2,3 | 28 |
Горы на высоте 1,5-2 км | 0,06-0,08 | 3,5-4,6 | 42-56 |
Реактивный самолет (высота 10 км) | 0,4 | - | - |
Сверхзвуковой самолет (высота 20 км) | 4 | - | - |
Сверхзвуковой самолет во время солнечной вспышки | 400-4000 | - | - |
Все живое на Земле находится под постоянным воздействием излучений от рассеянных в окружающей нас природе радиоактивных нуклидов. Одни из них постоянно образуются в атмосфере и на поверхности Земли в результате ядерных реакций, осуществляемых космическими лучами. Как уже говорилось выше, захват нейтрона атомом азота ведет к образованию радиоактивного углерода С14. За счет ядерных столкновений образуются радионуклиды Н3 (тритий), Ве7 (радиоактивный изотоп бериллия), Na22 и Na24 (радиоактивные изотопы натрия). С точки зрения внешних облучателей С14и Н3 не принимаются во внимание ввиду очень мягкого излучения этих изотопов. Радиоактивные бериллий и натрий дают высокоэнергетичные и, следовательно, глубоко проникающие β- и γ-излучения, т.е. участвуют во внешнем облучении организмов. Однако их образуется настолько мало, что удельный вклад в общую облученность оказывается ничтожным.
Иначе дело обстоит с естественными радионуклидами, такими, как уран, торий и радиоактивный изотоп калия К40, и продуктами их распада. Как известно, уран-238 образует целую серию продуктов распада. Многие короткоживущие, промежуточно образующиеся нуклиды, являются также и β-излучателями. Природный радий, например, излучает α-, β- и γ-лучи, так как всегда содержит некоторое количество таких продуктов распада (дочерние элементы).
Длительно живущие элементы – уран, радий, свинец-210 – составляют значительную часть земного излучения. Радон всегда присутствует в приземном воздухе, вызывая облучение поверхности тела и легких при его вдыхании. То же можно сказать и о втором широко распространенном естественном радионуклиде – тории Th232, имеющем время полураспада (в.п.) 1,41*1010 года. При распаде радиоактивного тория образуются радий228 (в.п. 5,8 лет), торий-228 (в.п. 1,9 года), короткоживущий радон-220 (в.п. 55 с), превращаясь в конечном результате в стабильный изотоп свинца Pb208.
Наконец, третий, самый распространенный естественный радионуклид – это радиоактивный 40К постоянно сопровождающий природный, стабильный калий, имеющий время полураспада 1,26*109 лет и испускающий при распаде β=1,38 МэВ и γ=1,46 МэВ лучи.
Облучение от земных радионуклидов в большей степени зависит от снежного покрова, влажности почвы и даже времени суток. Действительно, слой снега и большая влажность экранируют излучения почвы, и общая доза в приземной атмосфере снижается. Ночью с понижением температуры газообразный радон рассеивается медленнее, чем днем в жаркую погоду, и доза облучения на поверхности возрастает.
В различных частях света, в разных странах и отдельных местностях концентрация естественных радионуклидов подвержена значительным колебаниям, и соответственно изменяется средняя облученность населения.
Заметно меняется облученность тела человека в зависимости от времени, которое он проводит в закрытых помещениях: дома, на службе, на заводах, в шахтах. Следует учитывать два обстоятельства: материал, из которого построено помещение, и качество вентиляции. Последнее обстоятельство связано с концентрацией радона, в основном действующего на ткани легких.
Воздействие строительных материалов может проявляться двояко. С одной стороны, они защищают наше тело от внешней радиации, поглощая ее в своей толщи. С другой стороны, многие строительные материалы сами богаты радиоактивными естественными нуклидами и поэтому могут повышать мощность облучения в помещениях. Такие строительные материалы, как дерево, тепловые прокладки (войлок, стружки), почти не содержат или содержат очень мало радиоактивных нуклидов. В деревянных помещениях средний уровень облученности меньше, чем снаружи, вне дома. Отношение мощностей облучения внутри дома к внешнему облучению оказывается меньше единицы – 0,7-0,6 (коэффициент защиты). Низко радиоактивны и большинство пластиков, природный цемент, мрамор, дающие коэффициент защиты 0,8-0,9. С другой стороны, такие строительные материалы, как гранит, кирпич и бетон, имеющие в своем составе естественные радионуклиды, собственным излучением перекрывают защиту от внешнего облучения, и коэффициент возрастает от 1,3 до 1,7. Так, например, измерения, проведенные во многих домах в Швеции, показали, что средняя мощность облучения вне помещения в 90 мрад/год в деревянных домах снижалась до 57, в кирпичных поднималась до 112, а в бетонных достигала 172 мрад/год. Обратная зависимость наблюдалась в колебаниях облучения в районах с повышенной естественной радиоактивностью. Например, исследования, проведенные в районе Керала (Индия), показали, что в легких деревянных, бамбуковых и глиняных хижинах облучение было высоким (в некоторых местностях достигало 2800 мрад/год), так как эти материалы не защищали от высокого внешнего фона, а в кирпичных и цементных зданиях проявлялась защита, и мощность дозы снижалась до 500-700 мрад/год.
Таким образом, внешнее облучение в биосфере на поверхности Земли в нормальных условиях, примерно на высоте 1 м от ее поверхности, слагается из космических лучей (28,3 мрад/год) и земной радиации (32 мрад/год). В сумме организм человека получает 60 мрад/ год. Эта величина заметно больше в горах и районах повышенной радиоактивности.
Особенности внешнего и внутреннего облучения
Естественные радионуклиды постоянно вовлекаются в круговорот веществ, который так характерен для живых организмов. Пути и степень их проникновения в живые организмы будут зависеть от природы радионуклида. Радиоактивный изотоп углерода С14 постоянно образуется в верхних слоях атмосферы благодаря ядерной реакции космических лучей (нейтронов) с азотом:
n+N14→p+C14
Окисляясь с кислородом или озоном, этот углерод превращается в радиоактивную углекислоту:
С14+О2→ C14 О2
Последняя, равномерно перемешиваясь с обычной углекислотой (на что уходит около года), поглощается зелеными листьями растений в процессе фотосинтеза.
Хорошо известно, что все части растения строятся из продуктов фотосинтеза. Таким образом, углеводы, жиры, белки и другие компоненты растений, содержащие углерод, будут слабо радиоактивны и, поступая в качестве пищи в организм животного и человека, создают постоянно действующий небольшой уровень внутреннего облучения. Период полураспада С14 очень велик (5720 лет), поэтому он существует тысячелетия на нашей планете.
Установлено, что скорость образования С14 в верхних слоях атмосферы составляет 2,28 атома в 1 см3 в секунду. Это значит, что за год его образуется 0,038 МКи. Эта цифра согласуется с содержанием С14 в атмосфере в целом, которое равно 3,8 МКи.
В атмосфере содержится около 1/60 части всего углерода (биосфера, океан, осадочные породы). На нашей планете около 230 МКи С14, чио сообщает природному углероду активность, равную 6,1 пКи на1 г углерода. Это очень слабая активность, дающая за год облучение тканей человека в пределах 0,5-2,2 мрад.
Значительно больший вклад в суммарную активность вносит такой природный нуклид, как радиоактивный изотоп калия К40. в обычном калии всегда содержится в очень небольшом количестве (0,0118%) радиоактивный изотоп К40. Без калия не происходит нормального развития организмов, без него невозможна жизнь. Содержание калия строго регулируется как в животном, так и в растительном организмах. Его концентрация в растениях выше, чем в живых тканях. Существуют специальные механизмы, работающие в биомембранах, которые регулируют распределение калия в организме человека. Его содержание в эритроцитах крови достигает 460 мг%, в мышцах – 360 мг%, в головном мозге – 330 мг%. Калия мало в костной ткани (50 мг%) и значительно меньше в сыворотке крови (20 мг%). В мужском организме по сравнению с женским его больше, особенно в период полового созревания. Молодой, энергично функционирующий организм содержит больше калия на 1 кг веса, чем старый. Эти данные получены при обследовании 859 человек обоего пола в камерах, позволяющих учитывать уровень и спектр излучения всего тела.
Соответственно содежанию калия меняется и облученность ткани от К40. Исходя из его среднего содержания в человеческом организме (200 мг%), можно рассчитать, что К40 усилит общую мощность облучения на 19 мрад/год. В различных тканях эта величина колеблется: в гонадах 9-21, ткани легких 10-24 и в костном мозге 16-38 мрад/год.
Уран, торий, радий повсеместно распространены в земной коре. Как показали специальные эксперименты, торий почти не усваивается растениями. Его содержание ничтожно мало в собираемом урожае и в зеленой массе растений, поэтому его можно не рассматривать как внутренний излучатель в организмах растений, животных и человека.
Иначе ведут себя уран и радий. Соли урана из почвы поступают в растение. Некоторые виды растений активно концентрируют уран. Было даже предложено использовать некоторые виды как своеобразные индикаторы присутствия урана в окружающей среде.
С растительной пищей уран попадает в организм животных и человека (около 0,2-0,9 пКи в день). Это количество в отдельных местностях, богатых урановыми солями, может повышаться до 1,2 пКи в день. Очень немного урана (1,4*10-3 пКи в день) поглощается за счет вдыхания пыли окружающего воздуха, которая всегда содержит небольшие количества этого нуклида. Значительно большие количества урана могут поступить в организм человека за счет воды некоторых минеральных источников. Если обычная питьевая вода содержит менее 0,03 пКи/л урана, то в некоторых местностях его содержание в воде доходит до 20 пКи/л.
Внутреннее облучение по сравнению с внешним отличается рядом особенностей:
Если при внешнем облучении учитывалось только γ-излучение, то при внутреннем основное действие оказывают α- и β-излучения, имеющие возможность действовать непосредственно на жизненно важные ткани и органы человека.
Большинство радиоактивных изотопов накапливается в определенных тканях, что приводит к неравномерному облучению отдельных частей организма.
Внутреннее облучение действует все время, пока радиоактивные вещества находятся внутри организма.
Данные радиобиологических исследований показывают, что не все органы и ткани человеческого организма обладают одинаковой чувствительностью к облучению. Наиболее чувствительны гонады – половые железы и органы кроветворения. Поэтому помимо общей дозы облучения, получаемой человеком, необходимо также знать дозу, получаемую гонадами.
В приведенной ниже таблице представлены данные Научного комитета ООН по действию атомной радиации – мощности доз внешнего и внутреннего облучения от естественных источников в районах, не обладающих повышенным фоном радиоактивности. В таблице отдельно показана доза, полученная за счет α-частиц и нейтронов, обладающих большей биологической эффективностью, чем γ-лучи и β-частицы. Приведенные данные для внешнего облучения могут изменяться в зависимости от географических условий.
Годичные дозы, получаемые организмом человека в результате внешнего и внутреннего облучения от естественных источников.
Источники облучения | Получаемая доза, мрад/год | ||
Гонады | Клетки кости | Костный мозг | |
Внешнее облучение Космические лучи Излучение земли | 28 50 | 28 50 | 28 50 |
Внутреннее облучение Калий-40 Рубидий-87 Углерод-14 Радий-226 Радий-223 Полоний-210 Радон-222 | 20 0,3 0,7 - - 0,3 0,3 | 15 0,3 1,6 0,6 0,7 2,1 0,3 | 15 0,3 1,6 0,03 0,03 0,3 0,3 |
Итого | 100 | 99 | 96 |
%-α-частиц и нейтронов | 1,3 | 4,4 | 1,4 |
Ионизирующая радиация в повседневной жизни
Радиационное воздействие от атомных электростанций вряд ли увеличит естественный уровень радиоактивности на нашей планете. Для тревоги нет оснований, особенно при сопоставлении пользы от атомных электростанций с их неизмеримо малым влиянием на радиоактивность окружающей нас среды. Все подсчеты велись крупномасштабно: в отношении всей планеты и человечества на десятки лет вперед. Естественно, возникает вопрос: а не сталкиваемся ли мы с невидимыми лучами в повседневной жизни? Не создает ли человек вокруг себя дополнительные источники радиации при той или иной деятельности, не пользуемся ли мы этими источниками, подчас не ассоциируя их с действием атомной радиации?
В современной жизни человек действительно создает ряд воздействующих на него источников, иногда очень слабых, а подчас и достаточно сильных.
Рассмотрим хорошо известные рентгеновские диагностические аппараты, которыми снабжены все поликлиники и с которыми мы сталкиваемся при всевозможных профилактических обследованиях, проводимых в массовом масштабе среди населения. Статистика показывает, что количество лиц, проходящих рентгеновское обследование, возрастает с каждым годом на 5-15% в зависимости от страны, уровня медицинского обслуживания. Все мы хорошо знаем, какую огромную пользу приносит современной медицине рентгенодиагностика. Человек заболел. Врач усматривает признаки серьезного заболевания. Рентгеновское обследование часто дает решающие данные, следуя которым врач назначает лечение и спасает жизнь человеку. Во всех этих случаях уже не важно, какую дозу облучения получит больной при той или иной процедуре. Речь идет о заболевшем человеке, о ликвидации непосредственной угрозы его здоровью, и в этой ситуации вряд ли уместно рассматривать возможные отдаленные последствия от самой процедуры облучения.
Но за последнее десятилетие в медицине наметилась тенденция усиленного использования рентгеновских обследований здорового населения, начиная от школьников и призывников в армию и кончая населением зрелого возраста – в порядке диспансеризации. Конечно, врачи и здесь ставят перед собой гуманные цели: своевременно выявить начало еще скрытой болезни, чтобы вовремя и с большим успехом начать лечение. В результате тысячи, сотни тысяч здоровых людей проходят через рентгеновские кабинеты. В идеале врачи стремятся такие обследования проводить ежегодно. В результате общая облученность населения повышается. О каких же дозах облучения идет речь при медицинских обследованиях?
Научный комитет по изучению действия атомной радиации при ООН тщательно изучил этот вопрос, и полученные выводы многих удивили. Оказалось, что на сегодняшний день наибольшую дозу облучения население получает именно от медицинских обследований. Подсчитав общую среднюю дозу облучения для всего населения развитых стран от различных источников радиации, комитет обнаружил, что облученность от силовых реакторов даже к 2000 г. вряд ли превысит 2 - 4% от естественной радиации, от радиоактивных осадков 3 - 6 %, а от медицинских облучений население ежегодно получает дозы, достигающие 20% естественного фона.
Каждое диагностическое «просвечивание» дает на исследуемый орган облучение, начиная от дозы, равной годовой дозе от естественного фона (примерно 0,1 рад), до дозы, превышающей его в 50 раз (до 5 рад). Особый интерес представляют дозы, получаемые при диагностических просвечиваниях критическими тканями, такими как гонады (повышение вероятности генетического повреждения потомства) или кроветворные ткани, такие, как костный мозг.
В среднем медицинские диагностические «просвечивания» рентгеном для населения развитых стран (Англия, Япония, СССР, США, Швеция и др.) составляют среднюю годовую дозу, равную одной пятой части естественного фона радиации.
Это, конечно, в среднем очень большие дозы, сопоставимые с естественным фоном, и вряд ли здесь уместно говорить о какой-либо опасности. Тем не менее, современная техника позволяет уменьшить дозовые нагрузки при профилактических осмотрах, и это должно быть использовано.
Значительного снижения дозы облучения при рентгеновских обследованиях можно достигнуть, совершенствуя аппаратуру, защиту, повышая чувствительность регистрирующих устройств и сокращая время облучения.
Где еще в нашей повседневной жизни мы сталкиваемся с повышенной ионизирующей радиацией?
Одно время широкое распространение получили часы со светящимся циферблатом. Люминесцирующая масса, наносимая на циферблат, включала в свой состав соли радия. Излучения радия возбуждали люминесцирующую краску, и она светилась в темноте голубоватым светом. Но γ-излучение радия с энергией 0,18 МэВ проникало за пределы часов и облучало окружающее пространство. Обычные ручные светящиеся часы содержали от 0,015 до 4,5 мКи радия. Расчет показал, что наибольшую дозу радиации (около 2 - 4 рад) за год получают мышечные ткани руки. Мышечная ткань сравнительно радиоустойчива, и это обстоятельство не тревожило радиобиологов. Но светящиеся часы, находящиеся на руке очень много времени, расположены на уровне гонад и, следовательно, могут вызвать значительное облучение этих радиочувствительных клеток. Именно поэтому были предприняты специальные расчеты дозы, приходящейся на эти ткани за год.
Исходя из расчетов, что часы находятся на руке 16 часов в сутки, была вычислена возможная доза облучения гонад. Она оказалась лежащей в пределах от 1 до 60 мрад/год. Значительно большую дозу можно получить от больших карманных светящихся часов, особенно если их носить в кармане жилета. При этом доза облучения может возрасти до 100 мрад. Обследование продавцов, стоящих за прилавком со множеством светящихся часов, показало, что доза облучения была около 70 мрад. Подобные дозы, удваивающие естественный радиоактивный фон, увеличивают вероятность появления наследственных повреждений в потомстве. Вот почему Международное агентство по мирному использованию атомной энергии в 1967 г. рекомендовало заменить радий в светящихся массах такими радионуклидами, как тритий (Н3) или прометий – 147 (Рm147), обладающими мягким β-излучением, полностью поглощаемым часовой оболочкой.
Нельзя не упомянуть о множестве светящихся приборов в кабинах самолетов, пультах управления и др. Конечно, уровни радиации очень различны в зависимости от количества приборов, их расположения и удаленности от работающего, что постоянно должны учитывать органы санитарного надзора.
Далее речь пойдет о телевизоре, который используется в повседневной жизни любого гражданина. Телевизоры распространены в современном обществе столь широко, что вопрос о дозе радиации, поступающей от телевизора, был тщательно исследован. Интенсивность слабого вторичного излучения экрана, бомбардируемого электронным пучком, зависит от напряжения, под которым работает данная система телевизора. Как правило, черно-белые телевизоры, работающие при напряжении в 15 кВ, дают на поверхности экрана дозы 0,5 – 1 мрад/ч. Однако это мягкое излучение поглощается стеклянным или пластиковым покрытием трубки, и уже на расстоянии 5 см от экрана радиация практически не обнаруживается.
Иначе обстоит дело с цветными телевизорами. Работая на значительно большем напряжении, они дают от 0,5 до 150 мрад/ч вблизи экрана на расстоянии 5 см. предположим, вы смотрите цветной телевизор три – четыре дня в неделю по три часа в день. В год получим от 1 до 80 рад (не мрад, а рад!). эта цифра уже значите