Методика изучения объемов многогранников в курсе стереометрии
Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
«Вятский государственный гуманитарный университет»
Физико-математический факультет
Кафедра дидактики физики и математики
Выпускная квалификационная работа
Методика изучения объемов многогранников в курсе стереометрии
Выполнила студентка V курса физико-математического факультета Черезова Валентина Анатольевна
Научный руководитель: к.пед.н., доц. каф. дидактики физики и математики Шилова З. В.
Рецензент: к.пед.н., ст.преп. каф. дидактики физики и математики Горев П. М.
Допущена к защите в ГАК
« » Зам. Зав. кафедрой М. В. Крутихина
« » Декан факультета Е. В. Кантор
Киров 2008
Содержание
Введение
Глава 1. Теоретические основы изучения темы «Объемы многогранников» в курсе геометрии 10-11 классов
§ 1 Анализ учебной программы по математике 10-11 классов
§ 2 Анализ учебников геометрии 10-11 классов
§ 3 Различные подходы к определению объема многогранников
§ 4 Цели изучения темы «Объемы многогранников»
в курсе стереометрии
1.4.1. Развитие пространственных представлений
1.4.2. Развитие логического мышления
Глава 2. Методика изучения темы «Объемы многогранников»
§ 1 Пропедевтика изучения темы «Объемы многогранников»
§ 2 Методика изучения темы «Объем. Объемы призмы. Объемы прямоугольного параллелепипеда»
§ 3 Методика изучения темы «Объемы пирамиды»
Глава 3. Опытное преподавание
Заключение
Библиографический список
Приложение 1
Приложение 2
Приложение 3
Приложение 4
Приложение 5
Приложение 6
Приложение 7
Приложение 8
Приложение 9
Введение
Основной задачей модернизации российского образования является повышение его доступности, качества и эффективности. Это предполагает точный и правильный подход ко всему образовательному процессу, приведение его в соответствие с требованиями времени. В настоящее время традиционный взгляд на содержание обучения математике, ее роль и место в общем образовании пересматриваются и уточняются. Наряду с подготовкой учащихся, которые в дальнейшем в своей профессиональной деятельности будут пользоваться математикой, важнейшей задачей обучения становится обеспечение некоторого гарантированного уровня математической подготовки всех школьников независимо от специальности, которую они изберут в дальнейшем (10).
Для продуктивной деятельности в современном информационном мире требуется достаточно прочная базовая математическая подготовка, поэтому изучение темы «Объемы фигур» очень актуально, так как они необходимы для изучения смежных дисциплин, для продолжения образования.
Тема «Объемы » – одна из центральных тем в курсе стереометрии средней школы. Проблема организации уроков по изучению объемов многогранников одна из самых актуальных, так как она занимает значительную часть в курсе стереометрии. Если педагог не знает методики, особенностей проведения уроков по тому или иному учебнику, то в классе не может идти речи об усвоении программного материала по математике.
По мнению А.Д. Александрова, вопрос о необходимости любого школьного предмета, о необходимости того или иного его раздела сводится к вопросу о его практической надобности и значении в развитии личности (2).
Понимание того, что практически нужно в геометрии и что в данном предмете может служить развитию личности, должно определять и содержание предмета, и постановку его преподавания.
Ни один предмет ученики так ни готовы воспринимать, как наглядную геометрию, в то же время, ни один предмет не начинают изучать в школе с таким опозданием, как геометрию. Шестилетний провал в геометрическом образовании детей – это трудно восполнимая потеря с точки зрения и общего эмоционального и умственного развития ребенка. Процесс геометрического образования должен быть непрерывным (не допускать периодов бездействия), равномерным (не допускать перегрузок на каких-либо этапах), разнообразным (30).
Во всяком подлинно геометрическом предложении, будь то аксиома, теорема или определение, неразрывно присутствуют эти два элемента: наглядная картина и строгая формулировка, строгий логический вывод. Там, где нет ни одной из двух сторон, нет и подлинной геометрии.
Именно при изучении многогранников и их объемов решение данной задачи выступает наиболее ярко, и их рассмотрению должно быть уделено больше внимания, потому что многогранники дают особенно богатый материал для развития пространственных представлений, для развития того соединения живого пространственного воображения со строгой логикой, которая составляет сущность геометрии.
Объектом выпускной квалификационной работы является процесс обучения стереометрии в средней школе.
Предмет исследования – изучение объемов многогранников в курсе стереометрии.
Основная цель исследования – разработать методические рекомендации по изучению темы «Объемы многогранников» в курсе стереометрии по учебникам (7) и (8).
Гипотеза исследования: изучение объемов многогранников в курсе стереометрии в средней школе будет более эффективным, если:
· формировать понятие объема на наглядно-интуитивном уровне с привлечением жизненного опыта учащихся;
· целенаправленно работать по формированию понятия объема и навыков решения основных типов задач в 5-6 классах;
· систематически обращаться к задачам на объемы многогранников в старших классах;
· проводить факультативные курсы.
Для достижения поставленной цели необходимо решить следующие задачи:
· проанализировать программу по математике для 10-11 классов и ряд учебников по геометрии в соответствии с программой;
· проанализировать учебно-методическую и научно- педагогическую и математическую литературу по теме исследования;
· выделить различные подходы к определению понятия «Объемы многогранников»
· рассмотреть методические аспекты изучения темы «Объемы многогранников»
· составить план факультативных занятий по теме «Объемы многогранников»;
· провести опытное преподавание.
Методы исследования:
1) изучение и анализ научно-педагогической, методической и математической литературы, программы, учебников, учебных и методических пособий по теме;
2) посещение уроков, на которых рассматривались многогранники и их объемы и наблюдение за работой учащихся;
3) опытное преподавание.
Глава 1. Теоретические основы изучения темы «Объемы многогранников» в курсе геометрии 10-11 классов
§ 1 Анализ учебной программы по математике 10-11 классов
Проанализировав учебную программу по математике (23), можно заметить, что основной целью изучения свойств геометрических тел в пространстве является развитие пространственных представлений учащихся, освоение способов вычисления практически важных геометрических величин и дальнейшее развитие логического мышления учащихся.
Курсу присущи систематизирующий и обобщающий характер изложения, направленность на закрепление и развитие умений и навыков, полученных в неполной средней школе. При доказательстве теорем и решении задач активно используются изученные в курсе планиметрии свойства геометрических фигур, применяются геометрические преобразования, векторы и координаты. Высокий уровень абстрактности изучаемого материала, логическая строгость систематического изложения соединяются с привлечением наглядности на всех этапах учебного процесса и постоянным обращением к опыту учащихся. Умения изображать важнейшие геометрические тела, вычислять их площади поверхностей и объемы имеют большую практическую значимость.
Другой подход к структурированию курса математики старших классов связан с реализацией профильной дифференциации обучения. Вводятся два курса – курс А и курс В разного объема и уровня.
Курс А ориентирован на тех учащихся, которые рассматривают математику как элемент общего образования и не предполагают использовать ее непосредственно в своей будущей профессии. Этот курс представлен одним предметом математикой, в котором в разумной последовательности чередуются сведения алгебры и начал анализа с геометрическим материалом.
Цель изучения курса А в 10-11 классах – дать учащимся представление о роли математики в современном мире, о способах применения математики как в технических, так и в гуманитарных сферах. При изучении в этом курсе элементов анализа опора делается на наглядно-интуитивное представление учащихся, роль формальных рассуждений и доказательств невелика. Изучение геометрического материала также широко опирается на наглядность. Существенно снижается внимание к идее аксиоматического построения курса стереометрии. Основной акцент делается на формирование умений применить изученные факты в простейших случаях.
Курс В предназначен для учащихся, выбравших для себя те области деятельности, в которых математика играет роль аппарата, специфического средства для изучения закономерностей окружающего мира. В рамках этого курса сохраняются традиции деления на два предмета – алгебра и начала анализа и геометрия.
Изучение алгебры и начал анализа и геометрии как составляющих курса В предполагает реализацию тех же целей, которые ставятся перед этими математическими дисциплинами в общеобразовательном курсе, но на более высоком и усложненном уровне (36).
Изучение программного материала по теме «Объемы многогранников» дает возможность учащимся:
· получить представление о широте применения геометрии в различных областях человеческой деятельности; познакомиться с некоторыми фактами истории геометрии;
· усвоить систематизированные сведения о пространственных формах;
· научиться проводить аналогию плоскими и пространственными конфигурациями, видеть общность и различие свойств аналогичных структур на плоскости и в пространстве, использовать планиметрические сведения для описания и исследования пространственных фигур;
· научиться иллюстрировать и моделировать проекционным чертежом пространственные формы, решать позиционные задачи (в частности, задачи на сечения) на проекционном чертеже;
· решать задачи на нахождение площадей поверхностей и объемов тел, на вычисление линейных и угловых элементов пространственных конфигураций;
· решать задачи на доказательство;
· овладеть набором приемов, часто применяемых для решения стереометрических задач на вычисление и доказательство.
Уровень обязательной подготовки по теме «Объемы многогранников» ограничивается следующими требованиями:
· уметь распознавать на моделях и по описанию основные пространственные тела (призма, пирамида), указывать их основные элементы, узнавать эти формы в окружающих предметах;
· уметь иллюстрировать условие стереометрической задачи либо чертежом, либо моделью;
· уметь вычислять значение геометрических величин (длин, площадей, объемов), применять изученные формулы;
· уметь решать несложные задачи на вычисление с использованием изученных свойств и формул (свойства параллельности прямых и плоскостей, многогранников и тел вращения).
В содержание материала по теме «Объемы многогранников» входят разделы: «Объем прямоугольного параллелепипеда». «Объемы прямой призмы и цилиндра». «Объемы наклонной призмы, пирамиды и конуса». «Объем шара и площадь сферы». «Объемы шарового сегмента, шарового слоя и шарового сектора».
Это обязательный минимум, которым должны овладеть учащиеся, изучая тему «Объемы многогранников».
§ 2 Анализ учебников геометрии 10-11 классов
Исходя из требований программы, различные авторские коллективы предлагают ряд учебников геометрии 10-11 классов. Рассмотрим некоторые из них.
Учебник (7) является продолжением и развитием учебника для 7-9 классов того же авторского коллектива. Изложение теоретического материала более строгое, чем на предыдущей ступени обучения. Теоретические тексты кратки и доступны. Система упражнений последовательна, содержит задачи разного уровня сложности, примеры решения наиболее важных задач, причем данные решения наиболее трудных задач потребуются ученикам как опорные, при доказательстве теорем, следствий из теорем и т. д. Имеются дополнительные задания, которые идут после всей главы. Для решения этих задач необходимо знать не только материал изученной главы («Объемы тел»), но и применить знания, умения и навыки, полученные при изучении других тем. В процессе их решения очень хорошо развивается логика, воображение. Другими словами можно сказать, что при решении дополнительных задач у учащихся развиваются три качества: пространственное воображение, практическое понимание и логическое мышление.
На изучение темы «Объемы тел» отводится 19 ч. Входят такие разделы, как: объем прямоугольного параллелепипеда, объемы прямой призмы и цилиндра, объемы наклонной призмы, пирамиды и конуса, объем шара и площадь сферы, объемы шарового сегмента, шарового слоя и шарового сектора.
Основная цель – продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов. В курсе стереометрии понятие объема вводится по аналогии с понятием площади плоской фигуры, и формулируются основные свойства объемов. Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства, так как вопрос об объемах принадлежит, по существу, к трудным разделам высшей математики. Поэтому нужные результаты устанавливаются, руководствуясь больше наглядными соображениями. Учебный материал главы в основном должен усваиваться в процессе решения задач.
Основная теория в начале курса стереометрии изучается с опорой на геометрические тела, что повышает доступность материала, а значит, и результативность обучения.
Учебник И. Ф. Шарыгина (11) реализует авторскую наглядно-эмпирическую концепцию построения школьного курса геометрии. Его характеризует отказ от аксиоматического метода и акцент на использование наглядных методов в процессе построения теории и решения задач. В учебнике нетрадиционно изложены многие необходимые теоретические факты. Их доказательства оригинальны и, что немаловажно, красивы. Учебные тексты написаны хорошим литературным языком.
Теоремы в учебнике нацелены не столько на «прохождение программы», сколько на создание необходимого запаса сведений для решения задач. Например, весьма интересно изложен раздел «Объемы», в котором имеются теоремы, обычно не рассматриваемые в школе. Доказательства этих теорем поучительны сами по себе, а владение ими дает запас фактов и приемов, позволяющих решать довольно трудные задачи.
Система упражнений в учебнике позволяет реализовать идею уровневой дифференциации. Здесь есть задачи, отмеченные звездочкой, предназначенные для углубленной подготовки; специально выделены полезные (П), важные (В) и трудные (Т) задачи.
Учебник И. М. Смирновой (9) для естественнонаучного профиля является одним из нескольких учебных пособий, написанных И. М. Смирновой и В. А. Смирновым. Эти учебники объединяет единая концепция авторского подхода к геометрии как науке и учебному предмету, а их отличия связаны с учебными задачами, которые ставятся в том или ином профиле. Так учебник для естественнонаучного профиля позволяет углубить знания учащихся по геометрии, в нем расширен материал о многогранниках, например, имеются теорема Эйлера, учебные пункты, посвященные правильным, полуправильным, звездчатым многогранникам, многогранникам, вписанным в сферу, описанным около сферы и т. п. Больше внимания в учебнике уделено изучению кривых и поверхностей, рассматриваются аналитические способы задания фигур. Наряду с декартовыми координатами в пространстве используются полярные и сферические координаты.
Учебник (6) написан кратко и просто, в нем реализован аксиоматический подход к построению курса. В теоретической части учебника авторы выделяют основные теоремы, из которых остальные получаются как следствия. Например, в первом параграфе выводится формула объема прямого цилиндра, а затем представление объема интегралом. Но после параграфа идут задачи на объем прямой призмы. Таким образом, ученики сами выводят формулы. В учебнике обращается внимание на практическое применение геометрии, на ее связь с искусством, архитектурой. Авторы представляют геометрию как живую развивающуюся науку, ведущую свою историю от египетских землемеров и геометров Древней Греции. Изложение теоретического материала строгое. Четкая структура, высокая научность, доступность изложения, простота и краткость – отличительные черты этого учебника. Авторы представляют геометрию, как науку, тесно связанную с окружающим миром. Появлению абстрактного понятия предшествует реальная картина, которая аргументирует необходимость этой абстракции.
К каждому параграфу дается набор задач. Среди них выделены основные задачи, то есть обязательные для всех. Именно в задачах заложен принцип развивающего обучения. Большую помощь учащимся окажут предметный указатель и ответы.
По учебнику (6) на изучение темы «Объемы тел и площади их поверхностей» отводится 20 ч. Входят такие параграфы, как: определение объема, представление объема интегралом, объемы некоторых тел – цилиндра (в том числе призмы), конуса (в том числе пирамиды), шара; площадь поверхности, площадь сферы, площадь поверхности цилиндра и конуса.
Основная цель – продолжить ознакомление учеников с геометрическими величинами.
Аппарат для нахождения этих величин взят из курса начал анализа: интегрирование и вычисление пределов. Тонкие вопросы существования этих величин требуют некоторого комментария со стороны учителя. Например, если мы умеем вычислять объем шара, то из каких соображений находится объем любой его части?
Следует заметить, что только в этом разделе теории в учебнике встречаются утверждения, не имеющие достаточно полного обоснования, опирающиеся на наглядно ясные соображения. Например, постулируется, что любое простое тело имеет объем.
В учебнике И. М. Смирновой и др. (10) реализован курс, несколько меньший по объему, чем в обычных классах, он рассчитан на 2 часа в неделю в течение полутора лет. В нем сохранены основные вопросы традиционной программы по стереометрии. При этом устранены излишняя детализация и теоремы, играющие вспомогательную роль.
Гуманитарная направленность курса поддерживается за счет вопросов исторического, философского и мировоззренческого характера, рассмотрения приложений геометрии. При этом курс логически связан, содержит необходимые определения, свойства, теоремы и их доказательства. Большую роль играет наглядность.
После теоретического материала имеются задания для самоконтроля по теории и различные задачи, среди которых выделены важные задачи, используемые при решении других задач. Главы заканчиваются списком задач, с помощью которых можно повторить содержание главы.
Таким образом, в настоящее время действующих учебников по геометрии для 10-11 классов очень много. Каждый авторский коллектив вносит в содержание своих учебников что-то новое, отличающее их от других. Школа и учителя вправе выбирать те из них, которые, по их мнению, дадут оптимальный уровень знаний по геометрии учащимся того или иного класса. В общеобразовательных школах, где нет углубленного изучения отдельных предметов, чаще всего используют учебник (7).
§ 3 Различные подходы к определению объема многогранников
Задача определения объемов тел относится к глубокой древности. Она возникла в связи с практической деятельностью людей. Говоря простым языком, объем – это часть пространства, занимаемая телом. Точнее: объем – некоторая физическая, а именно геометрическая величина, характеризующая то свойство тел, что они трехмерны или занимают часть пространства. С понятием величины мы много раз встречались в физике и в геометрии.
Прежде всего, величины можно измерять, получая при этом именованные числа. Будем считать, что величина, или именованное число, которое ее выражает, – это одно и то же.
Тогда: 1) величина не может принимать отрицательных значений; 2) если тело (или носитель величины) разбито на части, то сумма величин частей равна величине целого. Величины одного рода можно складывать; 3) для двух величин одного рода существует отношение – отвлеченное число, которое не зависит от способа измерения величин (3).
Рассмотрим конкретный пример.