Математическое развитие ребенка в системе дошкольного и начального школьного образования

На правах рукописи

БЕЛОШИСТАЯ Анна Витальевна

Математическое развитие ребенка

в системе

дошкольного и начального школьного образования.

13.00.02 – теория и методика обучения и воспитания (математика)


АВТОРЕФЕРАТ

диссертация на соискание ученой степени

доктора педагогических наук


Москва 2003


Работа выполнена в Мурманском государственном педагогическом университете

Научный консультант: доктор педагогических наук, профессор

Истомина – Кастровская Наталия Борисовна

Официальные оппоненты: доктор педагогических наук, профессор

Луканкин Геннадий Лаврович

доктор педагогических наук, профессор

Жохов Аркадий Львович

доктор педагогических наук, профессор

Кумарина Галина Федоровна

Ведущая организация: Волгоградский государственный педагогический университет

Защита состоится …………………… в 14 часов на заседании диссертационного Совета Д 212.136.02 в Московском государственном открытом педагогическом университете по адресу: 109544, г. Москва, ул. Верхняя Радищевская, д. 16 – 18.

С диссертацией можно ознакомиться в библиотеке Московского государственного открытого педагогического университета по адресу: 109544, г. Москва, ул. Верхняя Радищевская, д. 16 – 18.

Автореферат разослан ……………………

Ученый секретарь

диссертационного совета

кандидат технических наук

профессор А.Х.Ин

Общая характеристика исследования

Актуальность исследования. Преобразования в социальной, культурной, экономической жизни Российского общества обусловливают изменения в системе образования, являющейся важнейшим социальным институтом, который позволяет влиять на развитие общественного сознания, закрепляя в нем новые ориентиры развития. На необходимость обеспечивать “организацию учебного процесса с учетом современных достижений науки, систематическое обновление всех аспектов образования, отражающего изменения в сфере культуры, экономики, науки, техники и технологий” указано в тексте Концепции модернизации образования в Российской федерации.(1)

Демократические преобразования в Российском обществе привели к серьезным изменениям в системе дошкольного и начального школьного образования, которые коснулись как организационной, так и содержательной стороны этих ступеней образования. В частности, был разработан проект Концепции содержания непрерывного образования (дошкольное и начальное школьное звено)(2), в основе которой лежат: конституционное право каждого ребенка как члена общества на охрану жизни и здоровья, получение образования, гуманистического по своему характеру; бережное отношение к индивидуальности каждого ребенка; адаптивность системы образования к уровням и особенностям развития и подготовки детей.(3)

Гуманизация образования предполагает его ориентацию на развитие личности ребенка, направленность на конструирование содержания, форм и методов обучения и воспитания, обеспечивающих развитие каждого ученика, его познавательных способностей и личностных качеств. Таким образом, гуманизация образования, с одной стороны, предполагает максимально возможную индивидуализацию учебно-воспитательного процесса, а с другой – требует создания образовательных технологий, обеспечивающих реализацию основных положений Концепции непрерывного образования на дошкольном и начальном школьном звене на содержательном материале. Необходимость разработки таких технологий является чрезвычайно актуальной для практики обучения и воспитания детей дошкольного и младшего школьного возраста.

Наименее разработанными эти вопросы являются в теории и практике непрерывного математического развития ребенка в системе дошкольного и начального школьного образования.

В условиях развития вариативности и разнообразия дошкольного образования в последнее десятилетие происходит внедрение в практику работы дошкольных образовательных учреждений альтернативных образовательных программ, реализующих различные подходы к вопросам образования и развития ребенка дошкольного возраста. В этой связи, с теоретической и практической точек зрения все более актуализируется проблема разработки концептуальных подходов к построению системы непрерывного преемственного математического образования дошкольников и младших школьников, определения целей и оптимальных границ образовательного содержания дошкольных программ и их взаимосвязи со школьными программами, обеспечения качества и полноты методического обеспечения этих программ. Главной проблемой педагогов – воспитателей дошкольных образовательных учреждений является на сегодня необходимость реализации этих программ на уровне образовательных технологий.

Вопросы разработки концепции непрерывного математического развития ребенка дошкольного и младшего школьного возраста являются новыми для дошкольного образования, поскольку дошкольная педагогика традиционно ограничивалась созданием педагогических концепций воспитания дошкольника. Попытка решить указанные проблемы средствами создания содержательно обновленных, но методически не разработанных программ дошкольного образования (т.е. ограничиться только разработкой содержательной стороны) привела на сегодня к целому ряду противоречий в дошкольном математическом образовании, от которых страдают и дети, и педагоги – воспитатели. Таким образом, необходимость разработки концепции непрерывного математического развития ребенка дошкольного и младшего школьного возраста обусловлена, с одной стороны, современными требованиями к организации личностно-ориентированного образовательного процесса в ДОУ, цель которого – развитие ребенка, а, с другой стороны, необходимостью решения проблемы создания непрерывного образовательного процесса на дошкольном и начальном школьном этапе, цель которого, опять таки – развитие личности обучаемого в соответствии с его индивидуальными особенностями.

Вопрос о необходимости и возможности организации развивающего обучения ребенка младшего школьного возраста в процессе обучения математике весьма активно разрабатывается в дидактике и методике обучения в начальных классах (Л.В. Занков, В.В. Давыдов, Н.Б.Истомина, А.А.Столяр, П.Э Эрдниев и др.). В дошкольном воспитании вопрос развития личности ребенка связывается в основном с развитием творческих способностей и работой с одаренными детьми. Многочисленные исследования педагогов и психологов посвящены проблемам исследования и формирования творческих способностей ребенка (А.К.Бондаренко, В.Я.Воронова, Р.И.Жуковская, Т.А.Маркова, Д.В. Менджерицкая, Е.А.Флерина и др.). Психолого-педагогические условия, закономерности и механизмы развития различных способностей детей в последние годы являются предметом активных исследований ученых в рамках проблемы детской одаренности (Ю.Д.Бабаева, Е.С.Белова, Ю.З.Гильбух, Н.С.Лейтес, Е.Л.Мельникова, В.И.Панов, Т.В.Симаева, А.И.Савенков, М.И.Фидельман, Н.Б.Шумакова, Е.И.Щебланова, В.С.Юркевич, Е.Л.Яковлева и др.).

Наибольшее количество работ посвящено развитию способностей ребенка в художественном творчестве: музыкальном (Н.А.Ветлугина, А.А. Мелик-Пашаев, К.В.Тарасова и др.); изобразительном (В.А.Езикеева, Е.И. Игнатьев, Т.С.Комарова, Н.П.Сакулина и др.); художественно-речевом (О.И.Соловьева, Н.Г.Комратова, О.С.Ушакова и др.); театрально-игровом (Н.С.Карпинская, Т.Н.Карманенко, Л.С Фурмина и др.). Большое внимание в теории и практике развития способностей дошкольников уделено технологии ТРИЗ (теория решения изобретательских задач). Проблемам разработки ТРИЗ в различных областях жизнедеятельности посвятили свои исследования Г.С.Альтшуллер, И.М.Верткий, Б.Л.Злотин, А.В.Зусман, Г.И Иванов, М.С.Гафитулин, А.Нестеренко, А.Б.Селюцкий, 3.Г.Шустерман и другие.

В то же время специальные исследования в области развития математических способностей ребенка дошкольного и младшего школьного возраста практически отсутствуют. Имеющиеся исследования и публикации чаще рассматривают средний и старший школьный возраст (А. В. Брушлинский, А. Н. Колмогоров, В. А. Крутецкий, В. В. Давыдов, З. И. Калмыкова, А. Я. Хинчин, Ю. М. Колягин, Д. Пойа, Л. В. Виноградова, И. В. Дубровина, К. А. Рыбников, Р.Атаханов и др.). Из 38 диссертационных исследований, по вопросам математического образования дошкольников только пять работ посвящено проблеме развития познавательных способностей дошкольников на материале обучения математике (Вахрушева Л.И., 1996; Данилова В.В., 1973; Демина Е.С., 1999; Ермолаева Л.И., 1982; Иванова Т.И., 2001); три – преемственности дошкольного и начального математического образования (Кочурова Е.Э., 1995; Попова И.А., 1968; Сагымбекова П., 1979) и две – вопросам подготовки педагога к руководству математическим образованием ребенка дошкольного возраста (Абашина В.В., 1998; Еник О.А., 2000). При этом понятие «математическое развитие» рассмотрено только в последних двух исследованиях, где оно понимается как формирование математических знаний и умений у ребенка. Таким образом, даже в рамках исследований о развитии познавательных способностей и творческой одаренности детей младшего возраста, математическому развитию ребенка уделено мало внимания. При этом понятие «математическое развитие» трактуется в основном как формирование и накопление математических знаний и умений. Следует отметить, что основа такой трактовки понятия «математическое развитие» дошкольников была заложена еще в работах Венгера Л.А.(4) и на сегодня является наиболее распространенной в теории и практике обучения математике дошкольников. «Целью обучения на занятиях в детском саду является усвоение ребенком определенного заданного программой круга знаний и умений. Развитие умственных способностей при этом достигается косвенным путем: в процессе усвоения знаний. Именно в этом и заключается смысл широко распространенного понятия «развивающее обучение». Развивающий эффект обучения зависит от того, какие знания сообщаются детям и какие методы обучения применяются.» В данной цитате хорошо заметна предполагаемая иерархия категорий: знания – первичны, метод обучения – вторичен, т.е. подразумевается, что метод обучения «подбирается» в зависимости от характера знаний, сообщаемых ребенку (при этом употребление слова «сообщаемых» очевидно сводит «на нет» саму вторую половину высказывания, поскольку раз «сообщаемых», значит метод «объяснительно-иллюстративный», и, наконец, полагается, что само умственное развитие – это самопроизвольне следствие этого обучения.

Такое понимание математического развития устойчиво сохраняется в работах специалистов дошкольного образования. Например, в диссертационном исследовании Абашиной В.В. (Абашина В.В., 1998) понятию математического развития ребенка дошкольного возраста посвящен целый параграф (заметим, что это единственная работа в области дошкольного математического образования, которая специально рассматривает понятие «математическое развитие»). В этой работе дается определение понятию «математическое развитие»: «математическое развитие дошкольника - это процесс качественного изменения в интеллектуальной сфере личности, который происходит в результате формирования у ребенка математических представлений и понятий»(5) .

Таким образом, математическое развитие рассматривается как следствие обучения математическим знаниям. В какой-то мере это, безусловно, наблюдается в некоторых случаях, но происходит далеко не всегда. Если бы данный подход к математическому развитию ребенка был верным, то достаточно было бы отобрать круг знаний, сообщаемых ребенку, и подобрать «под них» соответствующий метод обучения, чтобы сделать этот процесс реально продуктивным, т.е. получать в результате «поголовное» высокое математическое развитие у всех детей. Данный подход в значительной мере пытались реализовать специалисты школьного обучения при создании различных учебников математики для начальной школы (Л.В.Занков, В.В.Давыдов, Н.Я Виленкин, А.М. Пышкало и др.), наполняя эти учебники различным содержанием: увеличивая долю арифметического материала, долю алгебраического материала, вводя элементы теории множеств, комбинаторики, алгоритмики и др. Более чем сорокалетний этап апробации этих учебников показал, что заметного влияния на уровень математического развития младших школьников эти системы не оказывают. При этом, очевидно, что говорить об отсутствии влияния содержания обучения на развитие как математического мышления, так и общего развития мышления ребенка неправомочно.

В исследованиях Д.Б.Эльконина и В.В. Давыдова было достаточно убедительно доказано в частности, что проблема обновления содержания обучения в начальных классах является частью проблемы организации развивающего обучения ребенка младшего школьного возраста. Психологическое обоснование важности и особой значимости этой проблемы было разработано Д. Б. Элькониным (1960, 1966) и В. В. Давыдовым (1966, 1972), в исследованиях которых было детально показано, что одним из решающих факторов в развитии мышления младших школьников выступает содержание обучения. Естественным было бы предположить то же самое в отношении развития мышления дошкольников. Однако, как справедливо отмечал известный советский кибернетик А.А.Фельдбаум: «Накопление знаний играет в процессе обучения немалую, но отнюдь не решающую роль. Человек может забыть многие конкретные факты, на базе которых совершенствовались его качества. Но если они достигли высокого уровня, то человек справится со сложнейшими задачами, а это и означает, что он достиг высокого уровня культуры»(6) (т.е. мышления). Таким образом, связь между содержанием обучения и процессом развития мышления ребенка, несомненно, существует, но ее нельзя считать достаточным условием обеспечения математического развития ребенка. В то же время, психологически и дидактически обоснованный отбор этого содержания, несомненно, будет играть значимую роль в процессе создания управляемой системы математического развития ребенка.

Необходимость осуществления математического образования ребенка дошкольного возраста сегодня не подвергается сомнению ни одной из существующих школ, направлений, авторских «команд», занимающихся разработкой теории и практики дошкольного воспитания и образования ребенка. Даже те авторские коллективы, которые ориентируют педагогов дошкольного образования на преимущественное использование образовательной среды и эпизодическое использование «образовательных ситуаций» в учебном процессе, формально отказываясь от систематических, программно определенных и методически разработанных занятий под предлогом их «формализма», «насилия над свободой личности ребенка» и вообще их «вредности для психического развития» малыша, тем не менее, не обходятся в своих образовательных «комплектах» без математического блока. Например, в методическом руководстве к программе «Радуга» утверждается: «Тенденция чрезмерно раннего (до 5 с половиной лет) обучения чтению, письму, математике, иностранным языкам, шахматам, музыке, работе на дисплее, игре со сложными электронными устройствами опасна потому, что при этом происходит ранняя и неправомерная стимуляция развития левого полушария головного мозга в ущерб правому – образному, творческому. А до 6 лет должно доминировать именно образное мышление. Буквы цифры, ноты, схемы вытесняют образы и подавляют развитие воображения. Обилие абстрактного материала ведет к «шизоидной интоксикации». Гасится и искажается эмоциональность»(7). В то же время математическое содержание в программе «Радуга» и программе «Детство» в рамках эпизодического использования образовательных ситуаций рекомендуется к изучению детьми с трех лет.

Широкое распространение среди педагогов дошкольного образования подобных взглядов в 90-х годах 20-го века привело к тому, что в 1 класс в эти годы часто приходили дошкольники, воспитанные на позициях отказа от систематического обучения и целенаправленного интеллектуального развития в дошкольном образовательном учреждении. И особенно больно это несоответствие сказалось на школьном обучении двум ведущим в начальной школе предметам: математике и русскому языку.

В начальной школе в эти годы наблюдался «альтернативный взрыв»: получили официальный статус система Л.В. Занкова (учебники И.И. Аргинской) и В.В. Давыдова (учебники Э.Н. Александровой) (90-92 гг.); учебники Л.Г. Петерсон (тогда еще в системе Л.В. Тарасова «Экология и диалектика», а позднее в системе Р.Н. Бунеева «Школа 2000») (94-95 г.); учебники Н.Б.Истоминой (сейчас в системе «Гармония») (95-96 г.); учебники – тетради Т.Н. Жикалкиной, С.И. Волковой, Н.Г. Салминой и др.

Учебники математики перечисленных выше школ, написанные в начале 90-х годов, явились выражением идеи ведущей роли обучения в развитии ребенка (Выготский Л.С.). Активные поиски психологии и дидактики развивающего обучения в 60 – 70 годы (дидактика развивающего обучения Л.В. Занкова; теория поэтапного формирования умственных действий П.Я. Гальперина; психологическое обоснование системы развития теоретического мышления ребенка В.В. Давыдова) дали толчок для активного методического творчества по созданию учебных пособий по математике нового поколения, ориентированных на дидактику развивающего обучения, ведущими принципами которой являются принципы высокого уровня трудности, приоритетности теоретических знаний, быстрый темп обучения и др.

Традиционной для дошкольного обучения математике в то время являлась программа математического образования Л.С.Метлиной (Метлина Л.С., 1977, 1984 и др.), ученицы и последовательности А.М. Леушиной (Леушина А.М., 1955, 1961, 1974). Эта программа и имела целью обеспечить систематическое и прочное обучение детей элементарным математическим знаниям и умениям. Двадцатилетний опыт реализации этой программы показал как положительные, так и отрицательные моменты системы, ориентированной, как теперь принято говорить, на «знаниевую парадигму». Одним из очевидных результатов работы по этой программе являлось то, что отсутствие ориентации на математическое развитие ребенка часто приводило к формальному усвоению знаний детьми, преимущественной ориентации на заучивание минимального объема математического содержания наизусть при использовании методики многократного повторения материала. Такой подход к математическому образованию дошкольников весьма негативно сказывался на процессе дальнейшего школьного обучения математике. Особенно острой ситуация стала в начале 90-х, когда в школах стали активно внедряться учебники математики развивающих систем обучения.

В то же время отказ от традиционной программы дошкольного математического образования в начале 90-х во многих случаях приводил к отказу от систематических занятий вообще. Результат был закономерен: стала повсеместной вынужденная практика отбора детей в классы с «развивающим обучением». Системы, теоретически созданные для реализации общего интеллектуального развития любого ребенка, оказывались «по плечу» лишь части хорошо подготовленных дошкольников, поскольку были естественно ориентированы на определенный уровень знаний первоклассника. Эта ситуация вызвала к жизни появление во второй половине 90-х годов в дошкольном образовании новых, содержательно насыщенных программ: «Школа 2000» и «Детство» (при этом их содержание оказалось намного обширнее, чем содержание традиционной программы предыдущего двадцатилетия). Однако авторы этих программ обратились, главным образом, к разработке содержательной, но не методической стороны.

В начальной школе в эти годы наблюдается встречный процесс реакции на низкую подготовленность первоклассников к изучению развивающих курсов математики: появляются модификации альтернативных программ, рассчитанные на «нулевой» уровень подготовки дошкольника. Самое яркое проявление этого течения – система «Школа XXI века», где в первом полугодии 1 класса вообще нет ни математики, ни чтения, ни письма, а есть интегрированный урок «Грамота» с элементами словесности, математики, труда, окружающего мира и изо. Таким образом, в то время как дошкольные математические программы во второй половине 90-х начинают активно усложняться и содержательно расширяться, школьные учебники математики для 1 класса идут по пути уменьшения объема математического содержания при усилении внимания к умственному развитию ребенка.

Процесс усложнения и содержательного расширения математических программ для дошкольников порождает большие трудности для педагога – воспитателя, который методически подготовлен в соответствии с единственным имеющимся сегодня учебным пособием А.М. Леушиной(8) (написанным в 70-е годы) и ориентированным на «знаниевую парадигму». Кроме того, необходимость обеспечения преемственности математического образования ребенка на дошкольном и начальном школьном этапе требует от воспитателя знания современных активно меняющихся каждые пять-шесть лет школьных программ и современных методик математического развития ребенка. Непривычной для воспитателя также является необходимость выбора одной из программ математического образования дошкольника, анализ ее согласованности с той или иной школьной программой по математике и реализации ее математически и методически грамотно, в соответствии с современными тенденциями личностно-ориентированного развивающего обучения, т.е. с максимальной пользой для ребенка, каким бы он ни был. Принятие Концепции содержания непрерывного образования на дошкольном и начальном школьном этапе требует от педагога – воспитателя методической деятельности по ее реализации, а, следовательно, организации непрерывного математического образования ребенка в контексте развивающего обучения.

Таким образом, сегодня в дошкольном математическом образовании налицо целый ряд противоречий как теоретического, так и практического характера.

Сформулируем эти противоречия:

Противоречие 1. Между необходимостью организации математического образования дошкольников на основе использования развивающих технологий и существующей «знаниевой» ориентацией в обучении математике педагогов - воспитателей.

Противоречие 2. Между осознаваемой в теории дошкольного воспитания необходимостью организации дошкольной математической подготовки систематического характера и неразработанностью теоретических концептуальных положений процесса математического развития ребенка.

Противоречие 3. Между признаваемой в практике дошкольного воспитания необходимостью организации систематической математической подготовки, направленной на развитие математических способностей ребенка, и неразработанностью прикладных аспектов этого процесса, т.е. методики математического развития ребенка.

Противоречие 4. Между требованием школьных программ обучения математике к уровню математического развития ребенка и результатами этого развития, наблюдаемыми в практике дошкольной математической подготовки.

Противоречие 5. Между необходимостью осуществления педагогом непрерывного математического развития ребенка дошкольного и младшего школьного возраста и несогласованностью содержания и методов обучения математике ребенка младшего возраста в существующих дошкольных и школьных программах.

Противоречие 6. Между основополагающим постулатом теории развивающего обучения, полагающим суть личности ребенка не как совокупность изначально заданных и неизменных индивидуальных особенностей, а как складывающуюся в образовательном процессе «саморазвивающуюся систему», поддающуюся управляемым процессам формирования и развития, посредством применения технологий развивающего обучения и отсутствием таковых технологий в дошкольном математическом образовании.

Эта группа противоречий обусловила проблему, разрешению которой посвящено данное исследование.

Объект исследования – процесс непрерывного математического развития детей дошкольного и младшего школьного возраста.

Предмет исследования – методическое обеспечение процесса непрерывного математического развития детей в системе дошкольного и начального школьного образования.

Цель исследования состоит в разработке и обосновании концепции математического развития ребенка дошкольного и младшего школьного возраста, позволяющей обеспечить осуществление непрерывности математического образования на дошкольной и начальной школьной ступени, его преемственности и повышение качества математической подготовки ребенка дошкольного и младшего школьного возраста, а также разработке и апробации ее прикладного аспекта в форме образовательной технологии (методы, средства, формы).

Генеральная гипотеза.

Если целью математического образования ребенка в системе дошкольного и начального школьного обучения сделать не накопление математических знаний и умений, а математическое развитие ребенка, под которым понимается целенаправленная методическая работа над формированием и развитием основных свойств и качеств математического мышления у каждого ребенка до максимально возможного для него уровня, то это приведет к реальному осуществлению непрерывности математического образования, его преемственности и повышению качества математической подготовки ребенка дошкольного и младшего школьного возраста.

Под математическим развитием ребенка младшего возраста понимается целенаправленное и методически организованное формирование и развитие совокупности взаимосвязанных основных (базовых) свойств и качеств математического стиля мышления ребенка и его способностей к математическому познанию действительности. Такое развитие задает главную целевую установку обучения математике детей младшего возраста. Теоретические основы такой концепции позволяют построить эффективную методическую систему (включая технологию) непрерывного математического развития ребенка младшего возраста (дошкольника и младшего школьника), предоставляющую каждому ребенку условия для индивидуального продвижения в математическом содержании (траектории). Последовательная реализация концептуальной целевой установки на базе разработанной методики будет способствовать 1) практическому созданию единой системы преемственного дошкольного и начального обучения математике и 2) достижению оптимально возможного для ребенка, соответствующего возрастному этапу уровня его математического развития.

Данная гипотеза может быть представлена последовательностью частных гипотез:

· Целенаправленная методическая работа над математическим развитием любого ребенка дошкольного и младшего школьного возраста возможна в процессеизучения программного учебного материала, если педагог опирается на такую технологию обучения математике, в которую изначально заложены методы и приемы, направленные на стимуляцию и развитие основных качеств и характерных особенностей математического мышления.

· Если условия, порождающие преемственные связи в едином контексте математического развития ребенка разрабатывать в русле непрерывности дошкольной и школьной ступеней в системе развивающего образования на основе единого концептуального подхода к построению методологии и содержания математического образования ребенка младшего возраста, то это обеспечит реализацию преемственности дошкольного и начального математического образования.

· Математическая подготовка ребенка дошкольного и младшего школьного возраста будет эффективной, если представляет собой целенаправленный и непрерывный процесс активизации и формирования характерных свойств и качеств математического мышления, что приводит к стимуляции и упрочению способностей к продуктивному оперированию математическим содержанием.

· Если основным способом обучения ребенка сделать конструктивно-моделирующий способ деятельности с математическим материалом, а основным способом развития мыслительной деятельности – эмпирическое обобщение результатов своей собственной деятельности на основе сенсорно воспринимаемой информации, что соответствует ведущему типу мышления детей дошкольного возраста (наглядно-действенному в возрасте 3-5 лет и наглядно-образному в 6-10 лет), то такое обучение будет способствовать математическому развитию ребенка.

· Если для построения систематической конструктивно-моделирующей деятельности ребенка на математических занятиях использовать такое математическое содержание, которое позволяет при работе с ним обеспечить полноценную опору сенсорики ребенка на вещественную или графическую модель, то это содержание будет играть роль средства математического развития ребенка дошкольного и младшего школьного возраста.

· Если в центр внимания педагога ставить проблему индивидуального развития ребенка с природными математическими способностями, а также ребенка, требующего коррекционно-развивающего обучения, то ее разрешение реально возможно в рамках рассматриваемого в исследовании методического подхода, поскольку технология этого вида обеспечивает личностно-ориентированное обучение вне зависимости от уровня развития и природных способностей ребенка.

· Если внедрить в практику обучения и повышения квалификации воспитателей детских учреждений и учителей начальной школы предлагаемую в исследовании технологию математического развития ребенка младшего возраста, то это существенно повысит уровень их методической компетентности и сделает процесс математического развития дошкольников преемственным и более эффективным.

Цель, предмет, проблема и гипотеза исследования определили три ведущие группы задач.

Первая группа задач связана с теоретико–методологическим обоснованием ведущих положений концепции математического развития ребенка младшего возраста. Она включает следующие задачи:

1. Провести анализ современного состояния теории и практики дошкольного математического образования с точки зрения:

а) соответствия основным положениям развивающего обучения

б) соответствия современным образовательным технологиям обучения математике в начальной школе.

2. Проанализировать проблему непрерывности и преемственности дошкольного и начального математического образования.

3. На основе проведенного анализа выявить и сформулировать теоретические и методические основания концепции математического развития ребенка на дошкольном и начальном школьном этапе.

Вторая группа задач связана с разработкой прикладного аспекта концепции математического развития ребенка младшего возраста и содержит задачи:

1. Разработать содержательную базу процесса математического развития ребенка, обеспечивающую преемственные связи дошкольной и школьной ступеней в системе развивающего образования в едином контексте математического развития ребенка.

2. Разработать целостную образовательную технологию математического развития ребенка дошкольного возраста, в соответствии с принятым возрастным делением на группы в детском саду, и реализовать ее в учебно-методическом комплекте.

3. Разработать образовательную технологию математического развития ребенка младшего школьного возраста на период его обучения в начальных классах, и реализовать ее в учебно-методическом комплекте.

Третья группа задач связана с внедрением в практику технологии математического развития ребенка младшего возраста. Эта группа содержит задачи:

1. Разработать методическое обеспечение подготовки будущего воспитателя к осуществлению руководством математическим развитием ребенка дошкольного возраста.

2. Разработать методическое обеспечение повышения квалификации воспитателей ДОУ по осуществлению математического развития ребенка дошкольного возраста.

3. Провести педагогический эксперимент с целью определения эффективности разработанной технологии математического развития ребенка дошкольного и младшего школьного возраста.

Методологической основой исследования явились фундаментальные работы в области дидактики и психологии (Л.В.Выготский, Л.С. Рубинштейн, П.Я.Гальперин, Л.И.Божович, В.В.Давыдов, Л.А.Венгер, Л.В.Занков, А.В.Запорожец, М.А.Данилов, М.И.Махмутов, П.И.Пидкасистый, Н.Н.Поддъяков, М.Н.Скаткин, Ш.А.Амонашвили и др.), теория индивидуальных различий (Б.М.Теплов, В.С.Мерлин), теория учебной деятельности (В.В.Давыдов, Д.Б.Эльконин, Г.А.Вергелес), исследования в области образовательной технологии и личностно-ориентированного образования (Л.В.Выготский, В.П.Беспалько, Д.Г.Левитес, В.В.Гузеев, М.Е.Бершадский, Н.Ф.Талызина, И.С.Якиманская, Л.М.Фридман), системный подход и его применение к педагогическим исследованиям, работы математиков и методистов по проблемам математического развития ребенка и организации математического образования в ДОУ и начальной школе (Д.Г.Глейзер, Б.В.Гнеденко, В.А. Гусев, Г.В.Дорофеев, Н.Б.Истомина, А.Н.Колмогоров, А.В.Крутецкий, Ю.М.Колягин, А.М. Леушина, А.Г.Мордкович, А.А.Столяр и др.)

Решение поставленных задач потребовало привлечения следующих методов исследования:

- анализ философской, психолого-педагогической и методической литературы; изучение теории и практики организации математического образования ребенка дошкольного и младшего школьного возраста;

- изучение опыта профессиональной подготовки студентов педагогических вузов и опыта повышения квалификации педагогов ДОУ и начальной школы в системе ИПК;

- обобщение собственной работы автора с детьми всех возрастов в ДОУ, начальной и средней школе; обобщение опыта работы автора в системе повышения квалификации педагогов ДОУ и начального образования; обобщение опыта работы автора в педагогическом вузе;

- анкетирование студентов, учителей, воспитателей; анализ различных мнений и позиций специалистов, высказывавшихся в устной форме;

- обсуждение направлений работы и результатов на семинарах, конференциях и совещаниях работников образования различных уровней;

- наблюдение и анализ продуктов деятельности обучаемых (дошкольников, школьников, студентов, педагогов ДОУ и учителей начальных классов);

- длительный многоэтапный педагогический эксперимент по проверке эффективности разработанной технологии математического развития ребенка младшего возраста и по подготовке педагогов ДОУ и учителей начальной школы к руководству математическим развитием ребенка;

- внешняя экспертиза экспериментальных материалов и практики экспериментальной работы педагогами-предметниками (математиками); школьными психологами; специалистами в области методики обучения математике в ДОУ, школе и вузе; специалистами в области психологии и дидактики обучения и развития.

Работа над диссертацией включала следующиеэтапы:

На I этапе (1987 – 1992 гг.) велись разработка, проверка и внедрение технологии математического развития младших школьников на основе использования моделирования как средства и способа обучения, результатом чего стала диссертация на соискание ученой степени кандидата педагогических наук по методике преподавания математики. Одновременно с этим с 1989 по 1998гг. создавался и апробировался экспериментальный курс “Наглядная геометрия в начальных классах”, представляющий собой тетради на печатной основе для учащихся с 1 по 4 класс и методические пособия для учителя для каждого года обучения. С 1990 г. по настоящее время проводится масштабный эксперимент по теме исследования на базе средних школ г. Мурманска и области (в последние три года до 2000 детей ежегодно).

На II этапе (1993 – 2000гг.) велись разработк

Подобные работы:

Актуально: