Исследование возможности наполнения темы "Элементы II группы периодической системы Д.И. Менделеева" прикладным и экологическим содержанием посредством проведения интегрированных уроков
В настоящее время все более осознается опасность, которая может привести человечество к гибели – это экологическая катастрофа. Сегодня наша планета находится в состоянии экологического кризиса, который, если не принять срочных и действующих мер неминуемо приведет его катастрофе. Но кризис – это состояние обратимое.
В этих условиях особенно необходима психологическая перестройка людей в отношениях с природой. Воспитание бережного, внимательного отношения к природе людей окружающей среде, расширение знаний и навыков, необходимых для ее охраны, должны стать неотъемлемой частью общей системы просвещения, образования, подготовки кадров.
Большая роль в этом деле принадлежит образовательной школе, которая охватывает подрастающее поколение людей. Современному учителю необходимо проникнуть в сущность актуальных проблем взаимодействия природы и общества, увидеть их социальную основу, конкретно представить, какими средствами и способами решать задачи воспитания ответственного отношения школьников к природной среде.
Актуальность выбранной темы очевидна, так как элементы II группы таблицы Менделеева относятся к наиболее часто используемым в различных отраслях науки, техники, промышленности, быту и т.д. Их содержание в литосфере, атмосфере и гидросфере различно, но все они в силу своих химических и физических свойств играют очень большую роль в биохимических процессах, а значит, оказывают большое влияние на состояние биосферы вообще. Поэтому представляет интерес как рассмотрение этой группы элементов с точки зрения химика-эколога, так и с точки зрения формирования экологического мышления и культуры при обучении химии в школе.
Объект курсовой работы – элементы II группы периодической системы Д. И. Менделеева охватывают большое количество элементов с богатым спектром свойств.
Основной целью данной дипломной работы являлось исследование возможности наполнения темы «Элементы II группы периодической системы Д. И. Менделеева» прикладным и экологическим содержанием посредством проведения интегрированных уроков.
В связи с этим в работе решались следующие конкретные задачи:
1) обзор и анализ существующих школьных программ по изучению темы «Элементы II группы периодической системы Д. И. Менделеева»;
2) разработка различных форм организации занятий в рамках темы «Элементы II группы периодической системы Д.И. Менделеева»;
3) составление банка контрольных заданий по изучаемой теме.
Предмет исследования – выбор соответствующих форм организации занятий, обеспечивающих введение прикладных и экологических аспектов в процесс изучения темы «Элементы II группы периодической системы Д. И. Менделеева».
Объект исследования – процесс изучения темы: «Элементы II группы периодической системы Д.И. Менделеева» в средней школе.
Гипотеза – Разумное сочетание в процессе обучения теоретических и прикладных знаний обеспечивает понимание школьниками важности теоретических понятий, способствует более глубокому усвоению материала и формированию полноценных представлений об экологических аспектах химии.
глава I. СОСТОЯНИЕ ИЗУЧАЕМОГО ВОПРОСА В СОВРЕМЕННОЙ РОССИЙСКОЙ ШКОЛЕ
Для осознанного понимания химических процессов огромное значение имеет представление об элементах, их свойствах, способах получения, применения и экологических проблемах.
В школьной программе элементы 2 гр. упоминаются при изучении темы: «Первоначальные химические понятия» в 8 кл. (1) и в 9, 11 кл. следующим образом (2,3):
9 кл.Тема: Общие свойства металлов. | ||||||
№ урока п/п | Тема, содержание урока | Сроки прохождения учебного материала | Домашнее задание | |||
60. | Положение металлов в периодической системе и особенности строения атомов. Общие способы получения металлов. | Глава У1, § 40, 41. | ||||
61-62. | Электролиз растворов и расплавов солей: законы, составление схем и уравнений. | Глава У1, § 42. з.1-3 с.120. | ||||
63. | Общие физические и химические свойства металлов. | Глава У1, § 43, 44, в. 7-11 с.120, з. 4-5. | ||||
64. | Сплавы. Лабораторный опыт. «Рассмотрение образцов металлов». | Глава У1, § 45, примеры сплавов, их применение. | ||||
65. | Коррозия металлов и её предупреждение. | Глава У1, § 46. | ||||
66. | Контрольная работа № 6. «Общие свойства металлов». | |||||
9 кл. Тема: Металлы главных подгрупп 1-111 групп периодической системы элементов Д.И. Менделеева. | ||||||
67-68. | Характеристика щелочных металлов. | Глава У11, § 47, в.1-12, с.126, з. 1,2. | ||||
69-70. | Характеристика магния и кальция. Соединения кальция. | Глава У11, § 48, 49, в.1-12 с.132-133, з.1-2. | ||||
71. | Жёсткость воды и способы её устранения. | Глава У11, § 49, с. 131-132, в.13-15 с.133. | ||||
72-73. | Алюминий. Важнейшие соединения алюминия. | Глава У11, § 50, в.1-11 с.138., з.2. | ||||
74. | Практическая работа № 6. «Решение экспериментальных задач». | |||||
75. | Контрольная работа № 6. «Металлы главных подгрупп». | |||||
11 кл. Тема: Металлы | ||||||
Общая характеристика металлов. | Глава У, с.94-95, схема 9. | |||||
Общие способы получения металлов. | Глава У, § 1, таблица 10. | |||||
Металлы главных подгрупп. | Глава У, § 2, табл.11-13, вопр. и упр. 5-8 с. 120, зад.1-2. | |||||
Металлы побочных подгрупп: медь, цинк, титан, хром, железо, никель, платина. | Глава У, § 3,4,5,6,7,8. Табл.14, вопр. и упр. 9-17 с.121. зад.1,2 с. 140. | |||||
Сплавы металлов. | Глава У § 9, вопр.18-20 с. 121. табл. 16, 17, 18 с.116,117. | |||||
Оксиды и гидроксиды металлов. | Глава У, § 10, табл.19,20 с.118,119. | |||||
Решение задач и упражнений по теме «Металлы». | Повт. учебный материал гл.У, решить задачи. | |||||
Контрольная работа №4 по теме: «Металлы». | ||||||
Анализ контрольной работы, коррекция знаний, умений. | ||||||
При изучении этой темы пользуются учебником химии под редакцией Г. Е. Рудзитис, Ф.Г. Фельдман (1), также учебником за 8 - 9 класс под редакцией Н. С. Ахметова (4). Дидактическим материалом служит книга по химии для 8 - 9 классов под редакцией А. М. Радецкого, В. П. Горшкова; используются задания для самостоятельной работы по химии за 9 класс под редакцией Р. П. Суровцева, С. В. Софронова; используется сборник задач по химии для средней школы и для поступающих в вузы под редакцией Г. П. Хомченко, И. Г. Хомченко.
Появление большого числа учебников по химии для основной школы, их разнообразие вызвало большие трудности в их оценке. Чтобы избежать субъективности в экспертной оценке учебника были разработаны специальные требования, которым, по мнению педагогической общественности, должны отвечать современные учебники химии: соответствие адресату: типу учебного заведения, профилю класса, ступени обучения;
—соответствие возрастным возможностям учащихся;
—способствование пониманию научного метода химии и языка химической науки;
—раскрытие экологических проблем;
—возможности для самостоятельного изучения учащимися отдельных вопросов;
—использование современных способов изложения материала;
—условия для контроля и самоконтроля;
—плотность введения понятий.
Учебник под редакцией Р.Г. Ивановой, А.А. Кавериной «Химия-9» (5) полностью отвечает этим требованиям. Курс начинается с изложения периодического закона и периодической системы химических элементов Д.И. Менделеева, дано определение понятий «закон» и «система». Для ознакомления учащихся с эмпирическим методом познания в учебнике прослеживаются этапы открытия закона от накопления эмпирических фактов к выявлению закономерностей, от менделеевского этапа (химического) до современного (физического). Такая логика подачи материала способствует осознанию роли теории, пониманию значения периодического закона и изменения его функций – от обобщающей до объясняющей и прогнозирующей.
Возможность применения теоретических знаний предоставляется учащимся при характеристике металлов в зависимости от их положения в периодической системе и особенностей строения атомов.
Далее следует раздел, посвященный общим и особенным свойствам металлов, которые также рассматриваются на основе теоретических представлений о строении атомов, химической связи, процессов окисления-восстановления, ионного обмена в реакциях соединения металлов в растворах.
Особенностью этого учебного издания является то, что знания о веществах (неметаллах и металлах) позволяют рассмотреть в учебнике промышленные способы получения важнейших веществ, подвести учащихся к пониманию сущности сырьевой, природосберегающей и экологической проблем, осознанию роли химии в их решении.
Заканчивается учебник разделом, цель которого — обобщение и систематизация знаний по неорганической химии.
В учебнике есть Приложение 1 «Лабораторные опыты и практические работы и Приложение 2 «Для любознательных».
В приложении для любознательных помещен материал, расширяющий знания о строении металлов, об аллотропии олова, об электрохимических свойствах металлов (ряд напряжений), о токсичности ртути и способах устранения загрязнений окружающей среды, о минералах, комплексных соединениях, истории металлургии, металлах в окружающей среде, проблеме защиты окружающей среды (4).
В некоторых учебниках вместо познавательной задачи ставятся вопросы для актуализации знаний, полученных ранее. Такой прием тоже полезен, потому что способствует осознанию связей между параграфами, восприятию содержания предмета как единого целого, т. е. системности. Такой прием мы находим у Н. С. Ахметова (4), Н. Е. Кузнецовой, И. М. Титовой, Н. Н. Тары, А. Ю. Жегина (6).
В учебнике под редакцией Ахметова Н.С. (4) в каждой главе и параграфе цели конкретизированы в форме познавательных задач, которые могут носить проблемный характер, но, к сожалению, это пособие рассматривает только вопросы получения щелочноземельных металлов, их физические и химические свойства, применение, содержит материал для углубленного изучения, но не затрагивает экологические проблемы. Отличительностью особенностью этого учебника является высокий уровень упражнений и задач для закрепления изученного материала. Задания рассчитаны на самостоятельную работу учащихся и носят поисковый характер.
В настоящее время делаются попытки создать учебники, обеспечивающие дифференцированный подход к учащимся, так называемые двухуровневые и даже трехуровневые учебники. Примером могут служить учебники Л. С. Гузея, Р. П. Суровцевой и В. В. Сорокина (7), а также Е. Е. Минченкова и Л. С. Зазнобиной (8). В них наряду с текстом, предназначенным для каждого ученика, специально отчеркнуты вертикальной чертой слева абзацы, в которых изложен материал для более глубокого изучения химии. Этот текст будут читать ученики, заинтересовавшиеся химией. Он значительно превышает обязательный минимум содержания. Такая же дифференциация предусмотрена и в системе заданий.
Учебник под редакцией Фельдмана Ф.Г., Рудзитиса Г.Е. представляет собой своего рода справочник, где приводится характеристика, свойства элементов, применение, способы получения. Задания и упражнения носят классический характер. Вопросы производства освещены слабо, экологические проблемы, связанные с элементами и их соединениями приводятся в общих чертах.
Таким образом, рассмотрение основных школьных пособий по химии позволяет сделать вывод, что в условиях экологизации химического образования возрастает роль теоретического и практического материала экологической направленности. Эта проблема должна решаться через экологизацию школьных учебников по химии, где должны рассматриваться сущности экологических проблем и способы их решения, что будет способствовать формированию экологического мировоззрения учащихся.
Глава II. ЭЛЕМЕНТЫ II ГРУППЫ ТАБЛИЦЫ Д.И. МЕНДЕЛЕЕВА. ХИМИЯ И ЭКОЛОГИЯ
2.1 Общая характеристика
К щелочноземельным металлам относятся следующие элементы главной подгруппы II группы Периодической системы: кальций, стронций, барий и радий. Магний имеет ряд сходных со щелочными металлами свойств, бериллий по химическим свойствам ближе к алюминию. Щелочноземельные металлы являются электронными аналогами, внешний электронный уровень имеет строение ns2, в соединениях наиболее характерная степень окисления +2. В соединениях с неметаллами основой тип связи – ионный. Соединения щелочноземельных металлов окрашивают бесцветное пламя газовой горелки: кальция – в оранжево-красный, стронция – в темно-красный, бария – в светло-зеленый цвет. В природе щелочноземельные металлы встречаются только в виде соединений, основные минералы кальция – кальцит (известковый шпат, известняк, мрамор, мел) СаСО3, доломит CaMg(CO3)2, гипс CaSO42H2O, флюорит CaF2, гидроксиапатит (фосфорит) Ca5(PO4)3(OH), апатит Ca5(PO4)3F,Cl. Основные минералы стронция – стронцианит SrCO3 и целестин SrSO4, бария – витерит BaCO3 и барит BaSO4.
Физические свойства. Внешне – серебристо-белые блестящие металлы, твердость значительно выше, чем у щелочных металлов. Твердость по группе уменьшается сверху вниз, барий по твердости близок к свинцу. Температуры плавления щелочноземельных металлов выше, чем у щелочных и составляют: для кальция 851оС, стронция 770оС, бария 710оС. Плотности щелочноземельных металлов в подгруппе сверху вниз увеличиваются и равны для Са, Sr и Ва, соответственно 1,54, 2,63 и 3,76 г/см3.
Химические свойства щелочноземельных металлов
Щелочноземельные металлы химически весьма активны, в реакциях проявляют свойства восстановителей. Взаимодействуют с
1. Кислородом (горят на воздухе)
2Са + О2 = 2СаО
2Sr + O2 = 2SrO
2Ba + O2 = 2BaO
При этом образуются и нитриды состава Me3N2. При контакте щелочноземельных металлов с воздухом при комнатной температуре на поверхности металлов образуетсяжелтоватая пленка, состоящая из оксидов, гидроксидов и нитридов.
Оксид бария при нагреваии до 500оС образуeт пероксид:
2BaO + O2 = 2BaO2
который разлагается при температуре выше 800оС:
2BaO2 = 2BaO + O2
2. С водородом при нагревании образуют гидриды
Ca + H2 = CaH2
Ba + H2 = BaH2
3. С серой реагируют в обычных условиях, образуя сульфиды
Ca + S = CaS
и полисульфиды
CaS + nS = CaSn+1
4. С азотом – при нагревании образуют нитриды
3Ca + N2 = Ca3N2
5. C фосфором – фосфиды
3Ca + 2Р = Ca3Р2
6. С углеродом – при нагревании образуются карбиды, которые являются производными ацетилена:
Са + 2С = СаС2
7. С водой – растворяются с выделением водорода, реакция протекает спокойнее, чем со щелочными металлами:
Са + 2Н2О = Са(ОН)2 + Н2
8. Восстанавливают другие металлы из их соединений, например:
UF4 + 2Ca = U + 2CaF2
Активность взаимодействия с водой возрастает от кальция к барию.
Получение щелочноземельных металлов
Кальций получают электролизом расплaва хлорида кальция СаCl2, к которому добавляют 5-7% CaF2 для снижения температуры плавления:
СаCl2 = Са(катод) + Cl2(анод)
Стронций и барий получают методом алюмотермии из оксидов:
3BaO + 2Al = 3Ba + Al2O3
Применение щелочноземельных металлов
Металлический кальций применяется как восстановитель и легирующая добавка к сплавам (9-12).
2.2 Химия и экология
В последнее время наиболее остро стал вопрос об экологических проблемах, и одна из них – тяжелые металлы.
Тяжелые металлы - это элементы периодической системы с относительной молекулярной массой больше 40. Не исключение, II группа таблицы Менделеева, в частности ртуть, цинк, кадмий.
Таким образом, к тяжелым металлам относят более 40 химических элементов с относительной плотностью более 6. Число же опасных загрязнителей, если учитывать токсичность, стойкость и способность накапливаться во внешней среде, а также масштабы распространения указанных металлов, значительно меньше.
Прежде всего представляют интерес те металлы, которые наиболее широко и в значительных объемах используются в производственной деятельности и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.
Формы нахождения в окружающей среде. В атмосферном воздухе тяжелые металлы присутствуют в форме органических и неорганических соединений в виде пыли и аэрозолей, а также в газообразной элементной форме (ртуть). При этом аэрозоли свинца, кадмия, меди и цинка состоят преимущественно их субмикронных частиц диаметром 0,5-1 мкм, а аэрозоли никеля и кобальта - из крупнодисперсных частиц (более 1 мкм), которые образуются в основном при сжигании дизельного топлива.
В водных средах металлы присутствуют в трех формах: взвешенные частицы, коллоидные частицы и растворенные соединения. Последние представлены свободными ионами и растворимыми комплексными соединениями с органическими (гуминовые и фульвокислоты) и неорганическими (галогениды, сульфаты, фосфаты, карбонаты) лигандами. Большое влияние на содержание этих элементов в воде оказывает гидролиз, во многом определяющий форму нахождения элемента в водных средах. Значительная часть тяжелых металлов переносится поверхностными водами во взвешенном состоянии.
Сорбция тяжелых металлов донными отложениями зависит от особенностей состава последних и содержания органических веществ. В конечном итоге тяжелые металлы в водных экосистемах концентрируются в донных отложениях и биоте.
В почвах тяжелые металлы содержатся в водорастворимой, ионообменной и непрочно адсорбированной формах. Водорастворимые формы, как правило, представлены хлоридами, нитратами, сульфатами и органическим комплексными соединениями. Кроме того, ионы тяжелых металлов могут быть связаны с минералами как часть кристаллической решетки.
Источники.
Добыча и переработка не являются самым мощным источником загрязнения среды металлами. Валовые выбросы от этих предприятий значительно меньше выбросов от предприятий теплоэнергетики. Не металлургическое производство, а именно процесс сжигания угля является главным источником поступления в биосферу многих металлов. В угле и нефти присутствуют все металлы. Значительно больше, чем в почве, токсичных химических элементов, включая тяжелые металлы, в золе электростанций, промышленных и бытовых топок. Выбросы в атмосферу при сжигании топлива имеют особое значение. Например, количество ртути, кадмия, кобальта, мышьяка в них в 3-8 раз превышает количество добываемых металлов. Известны данные о том, что только один котлоагрегат современной ТЭЦ, работающий на угле, за год выбрасывает в атмосферу в среднем 1-1,5 т паров ртути. Тяжелые металлы содержатся и в минеральных удобрениях.
Наряду со сжиганием минерального топлива важнейшим путем техногенного рассеяния металлов является их выброс в атмосферу при высокотемпературных технологических процессах (металлургия, обжиг цементного сырья и др.), а также транспортировка, обогащение и сортировка руды.
Техногенное поступление тяжелых металлов в окружающую среду происходит в виде газов и аэрозолей (возгона металлов и пылевидных частиц) и в составе сточных вод.
Металлы сравнительно быстро накапливаются в почве и крайне медленно из нее выводятся: период полуудаления цинка - до 500 лет, кадмия - до 1100 лет, меди - до 1500 лет, свинца - до нескольких тысяч лет.
Существенный источник загрязнения почвы металлами - применение удобрений из шламов, полученных из промышленных и канализационных очистных сооружений.
В выбросах металлургических производств тяжелые металлы находятся, в основном, в нерастворимой форме. По мере удаления от источника загрязнения наиболее крупные частицы оседают, доля растворимых соединений металлов увеличивается, и устанавливаются соотношения между растворимой и нерастворимыми формами. Аэрозольные загрязнения, поступающие в атмосферу, удаляются из нее путем естественных процессов самоочищения. Важную роль при этом играют атмосферные осадки. В итоге выбросы промышленных предприятий в атмосферу, сбросы сточных вод создают предпосылки для поступления тяжелых металлов в почву, подземные воды и открытые водоемы, в растения, донные отложения и животных.
Дальность распространения и уровни загрязнения атмосферы зависят от мощности источника, условий выбросов и метеорологической обстановки. Однако в условиях промышленно-городских агломераций и городской застройки параметры распространения металлов в воздухе еще плохо прогнозируются. С удалением от источников загрязнения уменьшение концентраций аэрозолей металлов в атмосферном воздухе чаще происходит по экспоненте, вследствие чего зона их интенсивного воздействия, в которой имеет место превышение ПДК, сравнительно невелика.
В условиях урбанизированных зон суммарный эффект от регистрируемого загрязнения воздуха является результирующей сложения множества полей рассеяния и обусловлен удалением от источников выбросов, градостроительной структурой и наличием необходимых санитарно-защитных зон вокруг предприятий. Естественное (фоновое) содержание тяжелых металлов в незагрязненной атмосфере составляет тысячные и десятитысячные доли микрограмма на кубический метр и ниже. Такие уровни в современных условиях на сколько-нибудь обжитых территориях практически не наблюдается. Фоновое содержание свинца принято равным 0,006 мкг/ м3, ртути - 0,001-0,8 мкг/ м3 (в городах - на несколько порядков выше). К основным отраслям, с которыми связано загрязнение окружающей среды ртутью, относят горнодобывающую, металлургическую, химическую, приборостроительную, электровакуумную и фармацевтическую. Наиболее интенсивные источники загрязнения окружающей среды кадмием - металлургия и гальванопокрытия, а также сжигание твердого и жидкого топлива. В незагрязненном воздухе над океаном средняя концентрация кадмия составляет 0,005 мкг/ м3, в сельских местностях - до 0,05 мкг/м3, а в районах размещения предприятий, в выбросах которых он содержится (цветная металлургия, ТЭЦ, работающие на угле и нефти, производство пластмасс и т.п.), и промышленных городах - до 0,3-0,6 мкг/ м3.
Атмосферный путь поступления химических элементов в окружающую среду городов является ведущим. Однако уже на небольшом удалении, в частности, в зонах пригородного сельского хозяйства, относительная роль источников загрязнения окружающей среды тяжелыми металлами может измениться и наибольшую опасность будут представлять сточные воды и отходы, накапливаемые на свалках и применяемые в качестве удобрений.
Максимальной способностью концентрировать тяжелые металлы обладают взвешенные вещества и донные отложения, затем планктон, бентос и рыбы.
Осадки. Зона максимальных концентраций металлов в воздухе распространяется до 2 км от источника. В ней содержание металлов в приземном слое атмосферы в 100-1000 раз выше местного геохимического фона, а в снеге - в 500-1000 раз. На удалении 2-4 км располагается вторая зона, где содержание металлов в воздухе приблизительно в 10 раз ниже, чем в первой. Намечается третья зона протяженностью 4-10 км, где лишь отдельные пробы показывают повышенное содержание металлов. По мере удаления от источника соотношения разных форм рассеивающихся металлов меняются. В первой зоне водорастворимые соединения составляют всего 5-10 %, а основную массу выпадений образуют мелкие пылевидные частицы сульфидов и оксидов. Относительное содержание водорастворимых соединений возрастает с расстоянием (13-15).
2.2.1 Общие сведения о ртути
Важнейшие свойства ртути. Ртуть (Hg) – химический элемент II группы периодической системы элементов Д.И. Менделеева; атомный номер 80, относительная атомная масса 200,59; в состав природной ртути входят 7 стабильных изотопов с массовыми числами: 196 (распространенность 0,146%), 198 (10,02%), 199 (16,84%), 200 (23,13%), 201 (13,22%), 202 (29,80%) и 204 (6,85%). Природная ртуть характеризуется относительно устойчивым изотопным соотношением. Тем не менее в ней в небольших количествах присутствуют радиоактивные изотопы. Искусственно получено более 20 короткоживущих изотопов, из которых практическое значение имеют (метки в медицине, в аналитике, в технологических процессах) 203Hg (период полураспада 46,6 дня) и 197Hg (64,1 ч). Ртуть в обычных условиях представляет собой блестящий, серебристо-белый тяжелый жидкий металл. Удельный вес ее при 20оС 13,54616 г/см3; температура плавления = –38,89оС, кипения 357,25оС. При замерзании (–38,89оС) она становится твердой и легко поддается ковке.
Даже в обычных условиях ртуть обладает повышенным давлением насыщенных паров и испаряется с довольно высокой скоростью, которая с ростом температуры увеличивается. Это приводит к созданию опасной для живых организмов ртутной атмосферы. Например, при 24оС атмосферный воздух, насыщенный парами ртути, может содержать их в количестве около 18 мг/м3; такой уровень в 1800 раз превышает ПДК (предельно допустимую концентрацию) ртути в воздухе рабочей зоны и в 60000 раз ПДК в атмосферном воздухе. Ртуть способна испаряться через слои воды и других жидкостей. Кроме благородных газов, ртуть является единственным элементом, образующим пары, которые при комнатной температуре одноатомные (Hgo). В нормальных условиях растворимость паров ртути в воде, свободной от воздуха, составляет около 20 мкг/л.
При действии на ртутные пары вольтовой дуги, электрической искры и рентгеновских лучей наблюдаются явления люминесценции, флюоресценции и фосфоресценции. В вакуумной трубке между ртутными электродами при электрических разрядах получается свечение, богатое ультрафиолетовыми лучами, что используется в технике при конструировании ртутных ламп. Это же явление легло в основу спектрального метода определения малых количеств ртути в различных объектах. Ртуть характеризуется очень низкой удельной теплоемкостью. Это ее свойство находило применение в ртутно-паросиловых установках. Еще одно замечательное свойство ртути связано с тем, что при растворении в ней металлов образуются амальгамы - металлические системы, одним из компонентов которых является ртуть. Они не отличаются от обычных сплавов, хотя при избытке ртути представляют собой полужидкие смеси. Соединения, получающиеся в результате амальгамирования, легко разлагаются ниже температуры их плавления с выделением избытка ртути, что нашло широкое применение при извлечении золота и серебра из руд. Амальгамированию подвержены металлы, смачиваемые ртутью. Стали, легированные углеродом, кремнием, хромом, никелем, молибденом и ниобием, не амальгамируются.
В соединениях ртуть проявляет степень окисления +2 и +1. В специальной литературе в таких случаях обычно указывается соответственно Hg(II) или Hg(I). Обладая высоким потенциалом ионизации, высоким положительным окислительным потенциалом, ртуть является относительно стойким в химическом отношении элементом. Это обусловливает ее способность восстанавливаться до металла из различных соединений и объясняет частые случаи нахождения ртути в природе в самородном состоянии. Обычно самородная ртуть содержит небольшие количества других металлов, в том числе золото и серебро, т. е., по сути, является амальгамой. Известны минералы ртути, в которых содержания благородных и других металлов очень высоки (ртутистое серебро, ртутистое золото, ртутистый палладий, ртутистый свинец, амальгамид золота и др.). Ртуть весьма агрессивна по отношению к различным конструкционным материалам, что приводит к коррозии и разрушению производственных объектов и транспортных средств. Так, в 1970-е гг. довольно актуальной была проблема загрязнения самолетов, в конструкции которых попадала ртуть, вызывающая жидкометаллическое охрупчивание алюминиевых сплавов. Самолеты направлялись на капитальный ремонт и даже снимались с эксплуатации.
На воздухе ртуть при комнатной температуре не окисляется. При нагреве до температур, близких к температуре кипения (300-350оС), она соединяется с кислородом воздуха, образуя красный оксид двухвалентной ртути HgO, который при дальнейшем нагревании (до 400оС и выше) снова распадается на ртуть и кислород. Желтый оксид ртути HgO получается при добавлении щелочей к водному раствору соли Hg(II). Существует и оксид ртути черного цвета (Hg2O), нестойкое соединение, в котором степень окисления ее равна +1. В соляной и разбавленной серной кислотах и в щелочах ртуть не растворяется. Но она легко растворяется в азотной кислоте и в царской водке, а при нагревании – в концентрированной серной кислоте. Металлическая ртуть способна растворяться в органических растворителях, а также в воде, особенно при отсутствии свободного кислорода. Растворимость ее в воде зависит также от рН раствора. Минимальная растворимость наблюдается при рН=8, с увеличением кислотности или щелочности воды она увеличивается. В присутствии кислорода ртуть в воде окисляется до ионной формы Hg2+ (создавая концентрации до 40 мкг/л) (16).
2.2.2 Распространенность ртути в природе
Ртуть - редкий элемент. Ее средние содержания в земной коре и основных типах горных пород оцениваются в 0,03-0,09 мг/кг, т. е. в 1 кг породы содержится 0,03-0,09 мг ртути, или 0,000003-0,000009 % от общей массы (для сравнения - одна ртутная лампа в зависимости от конструкции может содержать от 20 до 560 мг ртути, или от 0,01 до 0,50% от массы). Масса ртути, сосредоточенная в поверхностном слое земной коры мощностью в 1 км, составляет 100 000 000 000 т (сто миллиардов тонн), из которых в ее собственных месторождениях находится только 0,02%. Оставшаяся часть ртути существует в состоянии крайнего рассеяния, по преимуществу в горных породах (в водах Мирового океана рассеяно 41,1 млн. т ртути, что определяет невысокую среднюю концентрацию ртути в его водах - 0,03 мкг/л). Именно эта рассеянная ртуть создает природный геохимический фон, на который накладывается ртутное загрязнение, обусловленное деятельностью человека и приводящее к формированию в окружающей среде зон техногенного загрязнения.
Известно более 100 ртутных и ртутьсодержащих минералов. Основным минералом, определяющим промышленную значимость ртутных месторождений, является киноварь. Самородная ртуть, метациннабарит, ливингстонит и ртутьсодержащие блеклые руды имеют резко подчиненное значение и добываются попутно с киноварью.
Всего в мире обнаружено около 5000 ртутных месторождений, рудных участков и рудопроявлений, получивших самостоятельное название; из них в разное время разрабатывались около 500. Но за всю историю ртутной промышленности подавляющая часть ртути (более 80%) получена на 8 месторождениях: Альмаден (Испания), Идрия (Словения), Монте-Амиата (Италия), Уанкавелика (Перу), Нью-Альмаден и Нью-Идрия (США), Никитовка (Украина), Хайдаркан (Киргизия).
В промышленности для получения металлической ртути используют два варианта технологии ее извлечения из руд: окислительно-дистилляционный обжиг с выделением ртути из газовой фазы и комбинированный способ, включающий предварительное обогащение и последующую пирометаллургическую переработку концентрата. По оценкам специалистов, человеком было произведено порядка 700000 т ртути, существенная часть из которых рассеяна на земной поверхности. Количество ртути, которое поступило в среду обитания в ходе других видов человеческой деятельности (при добыче различных полезных ископаемых, выплавке металлов, производстве цемента, сжигании ископаемого топлива и т. д.), также велико.
Ртуть концентрируется не только в ртутных минералах, рудах и вмещающих их горных породах. Согласно закону Кларка-Вернадского о всеобщем рассеянии химических элементов, в тех или иных количествах ртуть обнаруживается во всех объектах и компонентах окружающей среды, в том числе в метеоритах и образцах лунного грунта. В повышенных концентрациях ртуть содержится в рудах многих других полезных ископаемых (полиметаллических, медных, железных и др.). Установлено накопление ртути в бокситах, некоторых глинах, горючих сланцах, известняках и доломитах, в углях, природном газе, нефти.
Современные данные свидетельствуют о высоком содержании ртути в мантии (второй от поверхности, после земной коры, оболочке Земли), в результате дегазации которой, а также естественного процесса испарения ртути из земной коры (горных пород, почв, вод), наблюдается явление, получившее название «ртутного дыхания Земли». Процессы эти идут постоянно, но активизируются при извержениях вулканов, землетрясениях, геотермальных явлениях и т. п. Поставка ртути в окружающую среду в результате ртутного дыхания Земли (природная эмиссия) составляет около 3000 т в год. Поставка ртути в атмосферу, обусловленная промышленной деятельностью человека (техногенная эмиссия), оценивается в 3600-4500 т в год.
В природных условиях ртуть обычно мигрирует в трех наиболее распространенных состояниях - Нg0 (элементарная ртуть), Нg2+ (ион двухвалентной ртути), СН3Нg+ (ион метилртути), а также в виде менее распространенного иона Нg22+ Химические соединения Hg(ll) встречаются в природе значительно чаще, нежели Hg(l). В водах между Нg0, Нg22+ и Нg2+ устанавливается равновесие, которое определяется окислительно-востановительным потенциалом раствора и концентрацией различных веществ, формирующих комплексы с Нg2+. Ионы Нg(II) образуют устойчивые комплексы с биологически важными молекулами. Именно высокое химическое сродство ртути (II) и ее метилированных соединений к биомолекулам в существенной мере определяет токсикологическую опасность ртути в условиях окружающей среды.
Распределение и миграция ртути в окружающей среде осуществляются в виде круговорота двух типов. Во-первых, глобального круговорота, включающего циркуляцию паров ртути в атмосфере (от наземных источников в Мировой океан и наоборот). Во-вторых, локального круговорота, основанного на процессах метилирования неорганической ртути, поступающей, главным образом, из техногенных источников. Многие этапы локального круговорота еще недостаточно ясны, но полагают, что он включает циркуляцию в среде обитания диметилртути. Именно с круговоротом второго типа чаще всего связано формирование опасных с экологических позиций ситуаций.
Поступающие в окружающую среду из природных и техногенных источников ртуть и ее соединения подвергаются в ней различным преобразованиям. Неорганические формы ртути (элементарная ртуть Нg0 и неорганический ион Hg2+) претерпевают преобразования в результате окислительно-во