Использование радиоактивационного метода в анализе объектов окружающей природной среды

Методы анализа, основанные на радиоактивности, возникли в эпоху развития ядерной физики, радиохимии, атомной техники и с успехом применяются в настоящее время при проведении разнообразных анализов, в том числе в промышленности и геологической службе.

Основными достоинствами аналитических методов, основанных на измерении радиоактивного излучения, являются низкий порог обнаружения анализируемого элемента и широкая универсальность. Радиоактивационный анализ имеет абсолютно низший порог обнаружения среди всех других аналитических методов (10-15 г). Достоинством некоторых радиометрических методик является анализ без разрушения образца, а методов, основанных на измерении естественной радиоактивности, – быстрота анализа. Ценная особенность радиометрического метода изотопного разведения заключена в возможности анализа смеси близких по химико-аналитическим свойствам элементов, таких, как цирконий – гафний, ниобий – тантал и др.

Дополнительные осложнения в работе с радиоактивными препаратами обусловлены токсичными свойствами радиоактивного излучения, которые не вызывают немедленной реакции организма и тем самым осложняют своевременное применение необходимых мер. Это усиливает необходимость строгого соблюдения техники безопасности при работе с радиоактивными препаратами. В необходимых случаях работа с радиоактивными веществами происходит с помощью так называемых манипуляторов в специальных камерах, а сам аналитик остается в другом помещении, надежно защищенном от действия радиоактивного излучения.

Радиоактивные изотопы применяются в следующих методах анализа:

метод осаждения в присутствии радиоактивного элемента; метод изотопного разбавления; радиометрическое титрование; активационный анализ; определения, основанные на измерении радиоактивности изотопов, встречающихся в природе.


ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАДИОАКТИВАЦИОННОГО АНАЛИЗА (АКТИВАЦИОННОГО АНАЛИЗА)

Активационный анализ относится к основным ядерно-физическим методам обнаружения и определения содержания элементов в различных природных и техногенных материалах и объектах окружающей среды. Метод базируется на фундаментальных понятиях и данных о структуре атомных ядер, сечениях ядерных реакций, схемах и вероятностях распада радионуклидов, энергиях излучения, а также на современных способах разделения и предварительного концентрирования микроэлементов. Широкое распространение активационный анализ получил благодаря таким преимуществам перед другими методами, как низкие пределы обнаружения элементов (10–12–10–13 г), экспрессность и воспроизводимость анализа, возможность неразрушающего одновременного определения в пробе 20 и более элементов. Применение специальных химических методик и аппаратурных приемов позволяет определять фоновое содержание металлов в приземном слое атмосферы, следовые количества примесей в биологических объектах, особо чистых веществах и устанавливать химическую форму элементов в исследуемых пробах. Большое значение имеет возможность проведения анализа в диапазоне массы образцов от нескольких микрограммов (важно для труднодоступных образцов, например, метеоритов или лунного грунта) до нескольких сотен граммов. Следует отметить, что относительная погрешность определения содержания элементов в пробах активационным методом не выходит за пределы 10%, а воспроизводимость составляет 5–15% и может быть доведена до 0,1–0,5% при серийных анализах. В настоящее время имеется целый ряд разновидностей активационного анализа. Однако общим для всех этих методов является активация вещества нейтронами, гамма-квантами или заряженными частицами и последующая регистрация спектрального состава излучения возбужденных ядер или образовавшихся радиоактивных изотопов. Наиболее распространены первые два метода. Активационный анализ на заряженных частицах, в связи с их малым пробегом в веществе, используется главным образом для анализа тонких слоев и при изучении поверхностных эффектов.(1)

Для осуществления активационного анализа исследуемый образец (проба) подвергается облучению потоком бомбардирующих частиц, например нейтронов в ядерном реакторе. При этом образуются как стабильные, так и радиоактивные нуклиды (радионуклиды), характеризующиеся различными временами жизни и энергиями распада. Радиоактивность облученного образца прямо пропорциональна количеству образовавшихся радионуклидов. Поэтому количество радионуклида удобно выражать его активностью A, т. е. числом распадов в единицу времени, т.к. эту величину можно измерить с помощью различных детекторов. Уравнение для вычисления активности радионуклида выглядит так:

. (1)

Зная активность радионуклида A, содержащегося в образце на данный момент времени, можно рассчитать количество радиоактивных ядер и их массу:

, (2)

где m — масса радиоактивных ядер (г), M — массовое число радиоизотопа.

Скорость накопления радионуклида во время облучения исследуемой пробы можно описать дифференциальным уравнением:

Подобные работы:

Актуально: