Утилизация отработанных нефтепродуктов

Курсовая работа

«Утилизация отработанных нефтепродуктов»


Введение

Основными источниками загрязнений нефтью и нефтепродуктами являются добывающие предприятия, системы перекачки и транспортировки, нефтяные терминалы и нефтебазы, хранилища нефтепродуктов, железнодорожный транспорт, речные и морские нефтеналивные танкеры, автозаправочные комплексы и станции. Объемы отходов нефтепродуктов и нефтезагрязнений, скопившиеся на отдельных объектах, составляют десятки и сотни тысяч кубометров. Значительное число хранилищ нефтешламов и отходов, построенных с начала 50-х годов, превратились из средства предотвращения нефтезагрязнений в постоянно действующий источник таких загрязнений (1).

Предотвращение загрязнения природной среды нефтью и продуктами ее переработки – одна из сложных и многоплановых проблем охраны природной среды. Ни один другой загрязнитель, как бы опасен он ни был, не может сравниться с нефтью по широте распространения, числу источников загрязнения, величине нагрузок на все компоненты природной среды (6).

В Московской области, как и в других регионах страны, до настоящего времени нет системы предупреждения и ликвидации последствий чрезвычайных ситуаций, связанных с аварийными разливами нефти и нефтепродуктов, также нет системы сбора, переработки и утилизации нефтесодержаших отходов, которая отвечала бы современным стандартам и требованиям охраны окружающей среды. Эта проблема требует незамедлительного решения, так как накопление нефтесодержащих отходов влияет не только на экологическое состояние природной среды, но и на санитарное благополучие жителей области (2).

Забота российских природопользователей о природоохранной деятельности часто рассматривается как роскошь, непозволительная при нынешнем состоянии экономики. Однако с деловых позиций только прямые выгоды от проведения экологических природоохранных мероприятий и функционирования системы экологического управления предприятием связаны с расширением рынка сбыта продукции, отсутствием дополнительных расходов, снижением издержек производства, экономией основных фондов, повышением потенциала в получении инвестиций.

Руководство предприятия или организации должно быть озабочено ответственностью за нанесенный экологический ущерб и соответственно дальнейшими расходами на ликвидацию последствий этого ущерба. Приводимый многими руководителями в девяностые годы довод «нет денег», к сожалению, еще иногда оказывает магическое действие на некоторых должностных лиц. Однако стоит лишь взглянуть на расчет стоимости продукции предприятия-природопользователя, как становится ясно, что экологическая природоохранная компонента заложена в расчет цены.

Более того, защита природоохранных интересов просто невозможна в автономном режиме, вне сферы производственных отношений, без определения разумных форм взаимного сочетания экологических и экономических интересов, при которых сохранение качества окружающей природной среды и ее объектов – цель единственная и конечная (2).

Создание и реализация в Московской области комплексной системы сбора, переработки и утилизации нефтесодержащих отходов, включающей предупреждение и ликвидацию последствий аварийных разливов нефти и нефтепродуктов, является одним из необходимых элементов обеспечения природной и техногенной безопасности региона.

Во многих регионах страны создалась чрезвычайная обстановка с хранением, переработкой и утилизацией нефтеотходов, отходов СОЖ. лаков, красок, гудронов и др. отходов. Так, например, в Курской области ежегодно образуется более 12 тыс. т нефтемаслоотходов, из которых используется на местные нужды или утилизируется только 1400 т. Более 10 тыс. т вывозится в места организованного хранения, в т.ч. на территории предприятий. Во многих регионах страны отсутствуют специализированные предприятия по приему, переработке и утилизации нефтеотходов и отработанных нефтепродуктов, а также ликвидации очагов загрязнения (7).


1. Очистка средств хранения и транспортировки нефтепродуктов от нефтянных загрязнений

Задачи создания пунктов утилизации нефтеотходов

Своевременная и эффективная очистка средств хранения и транспортировки нефтепродуктов от нефтяных загрязнений является обязательным условием, обеспечивающим их надежность и качество топлива. В большинстве случаев для удаления этих загрязнений используют воду температурой 70 – 90 °С или пар. Достаточно часто для ускорения процесса отмыва емкостей и трубопроводов применяют различные моющие вещества, в том числе каустик, гидроксид натрия, поверхностно-активные вещества (ПАВ) типа ОП‑7 или сульфоксид‑61 и др.

Высокая стоимость, малая производительность, большие расходы энергии, воды и пара, необходимость наличия очистных сооружений большого объема или дорогостоящего оборудования для отделения нефтепродуктов – известные недостатки традиционного способа очистки. При этом от 3 до 7% добытого, перевезенного и сохраненного нефтепродукта теряется безвозвратно в загрязнениях и отходах.

После завершения процесса отмыва условной емкости технологическая вода, состоящая из отмытого нефтепродукта, раствора моющих веществ и нефтешламов, в лучшем случае в пруды – отстойники хранилищ, в худшем – в городскую сливную канализацию, речку, озеро, лес… Следствие – уменьшение площадей хозяйственных угодий, снижение плодородия почв, ухудшение здоровья населения, нарастание экологической угрозы.

Этих недостатков можно избежать в случае применения принципиально новых технологий отмыва загрязненных нефтепродуктами поверхностей.

В результате многолетних исследований российскими учеными холдинговой компании «Чистый Мир» была разработана технология, позволяющая отделять углеводородные соединения нефтепродуктов от разного рода материалов. Принцип ее действия основан на создании расклинивающего эффекта, в результате которого нефтяные загрязнения отрываются от поверхности и переходят в раствор. Высокая деэмульгирующая способность моющего средства обеспечивает при этом легкое разделение раствора и нефтепродукта без образования эмульсии.

Техническое моющее средство (ТМС) «БОК» имеет несколько модификаций, специально разработанных для разных типов загрязнений и поверхностей, так как очевидно, что отмыв светлых нефтепродуктов отличен от отмыва мазута, а процесс обезжиривания металлических поверхностей принципиально отличается от очистки почв и грунтов от нефтепродуктов. Особенно сложной задачей является очистка прудов-отстойников и шламонакопителей от застарелых нефтешламов, в связи с тем, что основными ингредиентами шламов являются асфальто-смолисто-парафиновые отложения, обладающие высокими значениями вязкости и температуры размягчения (1).

Грунты принципиально отличаются по составу, и такие показатели, как рН среды (водородный показатель), плотность, наличие гумуса (органический фактор), существенно влияют на выбор типа ТМС «БОК» и технологии отмыва. Например, промывка водой грунта не будет эффективна там, где отмечено высокое содержание глины или ила из-за трудности отделения загрязнителя от небольших частиц и низкой скорости седиментации.

При использовании в исследованиях физико-химических и технологических методов были разработаны оптимальные составы ТМС и технологии отмыва загрязнений при соблюдении экономической безопасности процессов. ТМС «БОК» используется в виде водных растворов с рабочей концентрацией 2 – 4% по массе, не содержит щелочей и фосфатов, имеет 4-й класс опасности по ГОСТ 12.1.007–76.

Принципиальная особенность «БОК» – сбалансированность состава, обеспечивающая хорошую смачивающую и максимальную эмульгирующую способность рабочих растворов, что позволяет удерживать загрязнитель в растворе с образованием электрически заряженных агрегированных молекул.

Композиции «БОК» содержат в своем составе полиэлектролиты, предотвращающие процесс ресорбции, ингибиторы коррозии и другие вспомогательные вещества. Для некоторых технологий предусмотрен беспенный процесс отмыва.

Технологический процесс отмыва, происходящий в непрерывном режиме, обеспечивает образование трех фаз: верхнего слоя нефтепродуктов, водного слоя и нижнего слоя (отмытый грунт, механические примеси).

Степень очистки поверхностей от загрязнителей зависит от температуры моющего раствора, а также от способа (погружной, струйный и др.) и времени отмыва. Степень очистки (моющую способность) определяли по формуле:

К = (Р1 – Р2) / (Р1 – Р0)´100

где Р0 – начальная масса образца до отмыва, г; Р1 – масса образца с загрязнителем, г; Р2 – масса образца после отмыва. г.

При повышении, температуры раствора и увеличении времени деэмульгирования повышается степень очистки поверхности и снижается количество воды в верхнем слое отмытого нефтепродукта.

Технология отмыва нефтепродуктов с использованием ТМС «БОК» рентабельна благодаря утилизации выделенного нефтепродукта. Отмытые нефтешламы, грунты, механические примеси могут быть переработаны в строительные материалы. Остаточное содержание нефтепродуктов в твердых продуктах после отмыва не превышает 2 г/кг, что позволяет использовать их в грунтах для озеленения промышленных площадок.

Особое внимание уделяется технологии утилизации отработанного раствора. Допустимые концентрации загрязняющих веществ в сточных водах (рН = 6,5 ¸ 9) перед сбросом в канализацию приведены ниже.

Для экспериментов использовали моющий раствор после отмыва почвы с мазутом. Нейтрализацию проводили путем добавления в моющий раствор флокулянтов при нормальной температуре и перемешивании. Оптимальным флокулянтом для растворов ТМС «БОК» является кальций хлористый СаСl2.

Результаты нейтрализации при загрузке на 1 кг раствора 40 г. СаСl2 приведены в табл. 1.

Таким образом, после нейтрализации раствор можно сбрасывать в канализацию при разбавлении его водой примерно в 2 раза.

Таблица 1

ЗагрязнительКонцентрация загрязнителя, мг/л
Раствор до нейтрализации (рН=10,85)Раствор после нейтрализации (рН=7,2)Осадок

Взвешенные

Вещества

20004321568
ХлоридыОтсутствуют216001420
Сульфаты*900Следы
Нефтепродукты1725,0172
ПАВ1120381082

Осадок содержит кроме частиц почвы (песка) в основном нетоксичный карбонат кальция (мел), который получается по реакции:

Na2CO3 + СаСl2 ® 2 NaCl + CaCO3.

В связи с этим можно рекомендовать использовать осадок в композициях строительных материалов (8), а также как осветляющий пигмент в дорожных покрытиях.

Моющее средство не вступает в химическую реакцию с нефтепродуктами, обладает антикоррозионными свойствами, может многократно использоваться в оборотном цикле, обладает малой степенью токсичности. Водный раствор, пригодный к многократному использованию, отмытый нефтепродукт, отвечающий соответствующим стандартам, и твердый осадок, не требующий дополнительной промывки, – три отдельных компонента, образующихся после применения данной технологии (1).

Практика показала высокую эффективность технологии отмыва железнодорожных цистерн, колесных пар. различных деталей в вагоноремонтных депо и т.д.

Применение технологии дает возможность в несколько раз сократить продолжительность работ, уменьшить расход пара и электроэнергии. При этом не требуется утилизации воды и других отходов, полученных в результате отмыва.

Особого внимания заслуживает технология очистки технической (подтоварной) воды. В настоящее время завершаются промышленные испытания установки фильтрации замазученной воды. Содержание нефти в 1 л воды после прохождения фильтрующей установки снижается с 500 до 0,2 мг и менее. Фильтр кассетного типа объемом до 1 м3 позволяет очистить от 3000 до

5000 м3 замазученной воды без замены фильтрующих элементов. При этом себестоимость очистки воды при использовании новой технологии в несколько раз ниже себестоимости ныне применяемых технологий.


2. Утилизация нефтесодержащих отходов

Сложность эффективной утилизации нефтешламов заключается в том, что химический состав нефтешламов предельно сложен. Кроме того, далеко не все их фракции можно сжечь или переработать. В иефтешламах присутствуют нефть, вода нефтяные эмульсии, асфальтены, гудроны, ионы металлов, различные механические примеси и даже радиоактивные элементы (1).

Очистка сточных вод промышленных предприятий несомненно, является важным аспектом с точки зрения охраны окружающей среды и рационального использования природных ресурсов. Однако сопутствующий очистке процесс шламообразования тоже требует внимания. Как правило, шламы остаются невостребованными, поэтому изыскание путей их утилизации является актуальной задачей (3).

Сейчас только на территории Российской Федерации в нефтяных амбарах различных нефтеперерабатывающих предприятий накоплены сотни миллионов тонн токсичных нефтешламов. Из-за отсутствия современной эффективной технологии утилизации нефтешламов возникла реальная угроза крупномасштабного загрязнения почв, подземных вод, рек и морей. Кроме того, становится вполне реальной опасность остановки нефтеперерабатывающих предприятий из-за переполнения нефтяных амбаров нефтешламами.

Нефтешламы состоят из трех ярко выраженных фракций: водной, нефтяной и твердой. Кроме того, они существенно различаются по своему составу и свойствам в зависимости от качества и состава исходной сырой нефти.

Для переработки нефтешламов используют биотехнологии, химиотехнологии, акустические, термические и чисто огневые технологии, а также комбинированные технологии.

Общим недостатком всех перечисленных технологий утилизации и переработки нефтешламов является их низкая производительность и высокие материальные, энергетические и финансовые затраты. Кроме того, они не позволяют осуществить полную переработку и угилизацию нефтешламов и не обеспечивают экологическую безопасность для окружающей среды.

2.1 Утилизация нефтесодержащих отходов на ОАО «ВЗТУ» и ООО «Лукойл-ВНП»

Были исследованы нефтесодержащие шламы двух химических предприятий Волгоградской области: ОАО «Волгоградский завод технического углерода» ОАО «ВЗТУ») и ООО «ЛУКОЙЛ-Волгограднефтепереработка» (ООО «ЛУКОЙЛ-ВНП»).

За время работы очистных сооружений ОАО «ВЗТУ» первичный отстойник на 70% заполнился нефтесодержащими донными отложениями, представляющими собой черную, маслянистую, вязкую смесь с содержанием влаги 30 – 35%.

Сточная вода на очистные сооружения поступает после зачистки и пропарки цистерн для сырья, промывки оборудования. Также поступают ливневые стоки с территории завода. По составу загрязнителей донные отложения отстойника – это, в основном, используемое на предприятии сырье, а именно: зеленое масло, термогазойль, экстракты газойлей каталитического крекинга, продукты коксохимических производств, антраценовое масло.

До пуска очистных сооружений нового типа на ООО «ЛУКОЙЛ-ВНП» нефтесодержащие отходы, образующиеся при первичной переработке нефти, обезвоживании, зачистке емкостей, промывке оборудования, контактной очистке остаточных и дистилляторных масел, после установок коксования вывозились на пруды – шламонакопители. На сегодняшний день образовалась многотонная масса экологически небезопасного шлама – смолооб-разного вещества черного цвета, содержание воды в котором колеблется в пределах 30 – 45%.

Углеводородный состав образцов шламов исследовали хромато-масс

спектроскопическим методом на приборе «Вариан МАТ‑111» при ионизирующем напряжении 70 В и силе тока эмиссии катода 240 мкА. Спектральный анализ показал, что в состав шлама ОАО «ВЗТУ» входят различные производные антрацена, пирена, фенантрена, хинона, флоурена (3).

Шлам ООО «ЛУКОЙЛ-ВНП» состоит из парафиновых углеводородов C5-C58. Было определено, что шламы этих предприятий имеют эффективную удельную активность естественных радионуклидов менее 370 Бк/кг, следовательно, в соответствии с Нормами радиационной безопасности относятся к I классу, т.е. являются радиационно безопасными.

Проделана экспериментальная работа по использованию исследуемых шламов в качестве добавки (1–3%) в противопригарную смесь для литейных форм и стержней. Полупроизводственные испытания проводились на ОАО «Волгоградский тракторный завод».

При заливке металла и прогреве литейной формы или стержня происходит возгонка ароматических углеводородов (температура кипения 245–300 °С), содержащихся в углеродсодержащем шламе ОАО «ВЗТУ». При контакте с залитым металлом ароматические углеводороды разлагаются, на поверхности отливки и на поверхностях песчинок в контактной зоне формы появляется плотная углеродистая пленка. Эта пленка предохраняет поверхность металла от окисления газами атмосферы формы и предотвращает взаимодействие кварцевого песка с металлом и образующимися на его поверхности оксидами.

Испытанная смесь обеспечивает наличие пригара на поверхности пробы 5–10% прочность после тепловой сушки 1.2–1,7 МПа. При использовании смеси без добавки шлама вся поверхность пробы покрывается пригаром.

В процессе испытаний противопригарной смеси, содержащей шлам ООО «ЛУКОЙЛ-ВНП», величина пригара составила 7–12%, прочность после тепловой сушки 1,2–1,8 МПа.

При заливке металла и прогреве литейной формы или стержня происходит окисление парафиновых углеводородов шлама с выделением СО, оседающего в литейной форме восстановительную атмосферу и препятствующего окислению заливаемого в форму металла. Неокисленный металл не смачивает кварцевый песок литейной формы или стержня и не проникает между частицами кварцевого песка. Кроме того, в восстановительной атмосфере не могут образовываться оксиды железа и железистый силикат фаялит 2FeO´SiO2, имеющий температуру плавления 1205 °С и припаивающий зерна кварцевого песка к поверхности отливки, образуя пригар. В результате исследований было установлено, что нефтесодержащие отходы ОАО «ВЗТУ» и ООО «ЛУКОЙЛ-ВНП» являются малоопасными (IV класс) и радиационно безопасными, поэтому их можно использовать в литейном производстве в качестве добавки в противопригарную смесь для литейных форм и и стержней (3).

2.2 Утилизация нефтешламов

Суть электроогневойтехнологии сжигания любых веществ состоит в создании практически идеальных условий горения пламени сжигаемых любых токсичных отходов, в связи с чем, значительно облегчается задача окончательной очистки отходящих газов. Электрическое поле взаимодействует (на атомарно-молекулярном уровне) с радикалами любых углеводородных веществ и одновременно воздействует на любые углеводородные цепочки, в частности на бенз(а) пирен, таким образом, что они расщепляются на водород. сгораемый в пламени, и углерод, который быстро доокисляетсяв электрическом поле до безвредного углекислого газа.

Вначале необходимо откачать и переработать в полезные товарные продукты большую часть сырой нефти, отстоявшейся на поверхности нефтяных амбаров. Причем термическую ректификацию этой нефти целесообразно производить прямо в нефтяном амбаре с нефтешламами или непосредственно около него.

Затем необходимо откачать и обработать в центрифугах последующие слои нефтешламов, относительно маловязкие водонефтяные легкие эмульсии, превращая их в эффективное топливо для теплоэнергетики.

Далее необходимо последовательно или параллельно откачивать слой воды, которая присутствует во всех нефтяных амбарах.

Фракции нефтешламов, которые невозможно сразу откачивать из амбаров, необходимо размягчить прямо в амбарах, используя для этого теплоту, полученную от сжигания части нефтешламов. Для этого целесообразно часть сырой нефти оставлять в этих нефтешламовых амбарах и сжигать ее на поверхности амбаров для выработки теплоты.

В процессе теплового разжижения густых, твердых фракций нефтешламов появляется возможность частичной перекачки их из амбаров и расфасовки в энергетические капсулы и брикеты из наиболее твердых смолистых фракций нефтешламов для последующего использования в качестве топлива. Изготовление таких горючих капсул и брикетов из густых и твердых, наиболее энергоемких фракций нефтешламов весьма перспективно и выгодно. Брикеты необходимо подсушивать, используя теплоту от сжигания части более легких фракций нефтешламовых эмульсий, а потом упаковывать и складировать.

Такие энергетические капсулы некоторых фракций нефтешламов можно использовать в котельных и при выполнении энергозатратных огневых технологий, например, при получении асфальтов, цементов в качестве высококалорийного «чистого» топлива. В этом случае их можно с пользой сжигать в специальных электрифицированных топках котельных установок (Пат. 2079786 РФ). Этот способ интенсификации горения позволяет использовать в качестве топлива любые горючие отходы. Эффективность использования котлов повышается за счет формирования теплового потока от факела по вектору электрического поля прямо на котел (1).

В основе электроогневой технологии лежит каталитическое воздействие электрического поля на процесс горения любых веществ и газов. В результате применения данной технологии можно утилизировать отходы, мусор и нефтешламы. Преимущества разработанной на основе этой технологии установки: экономичность в эксплуатации (расход топлива и электроэнергии снижен в несколько раз), дешевизна при производстве, высокая степень очистки отходящих газов. При сжигании нефтепродуктов, включая нефтешламы, резко снижается количество всех токсичных компонентов в отходящих газах на 70 – 80% первоначальной их концентрации. И что наиболее важно, в процессе электроогневого горения активно разрушаются любые отходы, включая нефтешламы. В пламени исчезают практически все токсичные компоненты, не только такие простые, как СО, СН, NO, но и такие сложные канцерогенные вещества типа бенз(а) пирена.

Технология позволяет быстро утилизировать практически все токсичные компоненты отходов, в т. ч. и нефтешламы.

При электроогневом послойном сжигании остатков конкретных нефтешламов можно регулировать параметры активизирующего горение электрического поля (напряженность, частоту высокого напряжения) в зависимости от состава и количества нефтешламов для обеспечения оптимальной скорости горения и достижения минимальной токсичности отходящих газов.

В ряде случаев для максимальной интенсификации процесса горения остатки нефтешламов сжигают в переменном электрическом поле определенной частоты, выбранной по критерию максимального чистого их сжигания.

А в некоторых случаях процесс сжигания нефтешламов необходимо проводить в постоянном электрическом поле с вектором напряженности поля, ориентированным в направлении, перпендикулярном к поверхности нефтешламов, с предельно высокой напряженностью, выбранной в зависимости от состава нефтешламов, по критерию максимальной интенсивности горения при минимуме токсичности отходящих газов (1).

Для утилизации нефтяной и водонефтеэмульсионной составляющих нефтешламов необходимо параллельно со сжиганием остатков нефтешламов осуществлять ректификацию собранной с поверхности нефтешламов нефти путем использования тепловой энергии от сжигания остатков нефтешламов для получения бензина, керосина и т.д.

С помощью установки электроогневого сжигания нефтешламов можно утилизировать их как непосредственно в амбаре, так и на производстве для обеспечения безотходной переработки нефти.

При безотходной технологии переработки нефти утилизацию нефтешламов осуществляют в специальных электрифицированных отходосжигающих печах, соединенных трубопроводами с ректификационными колоннами.

Устройство сжигания остатков нефтешламов выполнено в виде специальной электрифицированной печи, в которой предусмотрено устройство подачи нефтешламов в зону горения и выгрузки золы, а также чаша для сжигания нефтешламов, над которой размещен электроизолированный электрод с

коронирующими иглами, причем этот электрод присоединен электрически к одному из выходов высоковольтного блока напряжения, второй выход которого присоединен к чаше со сжигаемыми нефтешламами.

Для проведения комплексной утилизации нефтешламов в нефтяных амбарах, необходимо использовать комбинированное устройство с нефте-улавливающим приспособлением (рис. 1), состоящее из погружного насоса, губчатого валика, отжимного устройства, сепарационной емкости и ректификационной колонны, размещенной над печью сжигания остатков нефтешламов, а также содержащее само устройство электроогневого сжигания остатков нефтешламов.

Мобильное устройство электроогневого сжигания нефтешламов можно использовать как непосредственно в нефтяных амбарах, так и в местах разливов нефти на почве (рис. 2). Такое устройство размещается на транспортном средстве и имеет высоковольтный преобразователь напряжения, несколько электроизолированных выдвижных электродов, размещаемых по периметру площади предполагаемого сжигания нефтешламов (или амбара с нефтешламами). два поверхностных электрода в виде тонких металлических теплостойких сеток регулируемой площади, достаточной для покрытия части или всей площади поверхности нефтяного загрязнения или амбара с остаткми нефтешламов.

Первый сетчатый электрод размещают с нулевой плавучестью на поверхности нефтешламов и прикрепляют металлическими тросами к основаниям электроизолированных штанг, а второй сетчатый электрод натягивают поверх электроизолированных штанг. Сетчатые электроды соединяют с высоковольтным преобразователем напряжения (1).

Высоту электроизолированных электродов в мобильном устройстве выбирают из условия превышения высоты факела пламени сжигаемых отходов на величину расстояния, достаточную для устранения электрического разряда высоковольтного преобразователя напряжения через пламя сжигаемых остатков нефтешламов.

В установках установлены датчики уровня токсичности отходящих газов, которые связаны с устройством управления параметрами высоковольтного преобразователя напряжения.

Комбинированная установка (см. рис. 1) электроогневого сжигания нефтешламов работает следующим образом. С помощью насосов подают по трубопроводам нефть и тяжелые фракции нефтешламов в соответствующие резервуары, причем нефть отфильтровывают от воды в ротационном сепараторе. Устройство ректификации нефти крепится на специальных опорах с изоляторами. Остатки нефтешламов поступают в устройство сжигания, при этом одновременно создают электрическое поле для управления пламенем. В процессе реализации данного процесса подбирают напряженность поля по критерию оптимума интенсивности горения пламени и минимума токсичности отходящих газов. Полученную тепловую энергию используют для испарения и ректификации нефти.

Полезные фракции нефти (бензин, керосин) отводят из колонны по патрубкам. Остатки нефтешламов поступают по трубопроводу в нижнюю чашу с горящими нефтешламами (1).

Предложенная технология чистой интенсивной переработки и огневой утилизации нефтешламов позволяет на порядок удешевить процесс утилизации нефтешламов, повысить производительность устройств при реализации данного процесса, а главное, сделать его экологически чистым. Она может быть применима для быстрой и эффективной очистки любых нефтяных пятен.


3. Утилизация отходов машиностроительных и перерабатывающих предприятий

Развитие техники тесно связано с интенсификацией переработки нефти, применением топлив и смазочных материалов. В результате накапливаются различные отходы, оказывающие негативное влияние на окружающую среду. К сожалению, сбору и рациональному использованию отработанных масел уделяется недостаточно внимания. Регенерациёй получают лишь 16% всего объема масел.

В настоящее время на территории машиностроительных и нефтеперерабатывающих предприятий г. Ярославля и Ярославской области находятся значительные запасы отработанных масел, нефте- и маслошламов.

Масла либо хранятся в маслонакопителях на территории предприятий, либо используются в качестве добавок к котельному топливу или его заменителей (90%) (4).

3.1 Утилизация нефтеотходов

В процессе хранения отработанные масла расслаиваются. Верхний масляный слой – это трудноразделимая эмульсия нефтепродуктов с водой и механическими примесями (до 5%), средний слой – вода в виде масляной эмульсии, нижний слой – донный осадок (шлам), состоящий из твердой фазы (70%), пропитанной нефтепродуктами (до 10%) и водой (до 25%). Количество механических примесей с глубиной увеличивается.

Были исследованы маслоотходы нескольких цехов ОАО «Автодизель» г. Ярославля (цехов корпусных деталей, коробок перемены передач, вспомогательных). Отобранные пробы подвергались расслаиванию в течение суток.

Верхний слой направлялся на регенерацию с целью дальнейшего использования для приготовления смазочно-охлаждающий жидкостей типа «Аквол» (9).

Средний слой – сточная вода – очищался до соответствия предельно допустимым сбросам.

Нижний слой – отход, который до сих пор не утилизировался. При исследовании его химического состава было установлено, что низкая токсичность свидетельствует о незначительном содержании ионов тяжелых металлов, %: 27 – 44 железа; до 0,05 никеля; до 0,13 хрома; до 1 меди; 3 – 5 алюминия; до 20 кремния; 15 – 30 нефтепродуктов. Расчетный класс опасности (токсичности) – 3‑й или 4‑й в зависимости от типа шлама (5).

Также были исследованы нефтешламы Ярославской перевалочной нефтебазы, нефтешламы длительного хранения и текущей выработки установки «Альфа-Лаваль» (ОАО «Слазнефть-Ярославльнефтеоргсинтез» им. Д.И. Менделеева), (табл. 2).

Установлено, что исследованные нефтешламы содержат органические (18,6 – 28,6%) и неорганические (51,3 – 76,8%) вещества.

Основным компонентом неорганической части являются оксиды железа. Хотя их содержание невелико, но после прокаливания при температуре 600 °С эта часть приобретает магнитные свойства. Наличие большого количества веществ, нерастворимых в концентрированной соляной кислоте, очевидно, обусловлено присутствием в минеральной части алюмосиликатов.

Содержание органических веществ, определенное прокаливанием и экстракцией хлороформом, различно (5). Это можно объяснить тем, что в неорганической части присутствует кристаллизационная вода, которая удаляется при температуре 600 °С.

По составу минеральной части нефтешламы (как и маслошламы) близки к компонентам шихты для производства керамзита, а по фракционному составу органической части – к соляровым дистиллятам. Это позволяет предположить, что исследуемые масло- и нефтешламы можно использовать в качестве вспучивающей добавки при производстве керамзита

Таблица 2

ВеществаНефтешламы
с установки «Альфа-Лаваль»нефтеперевалочной базы

длительного

хранения

текущей

выработки

вода14,4–10,622,510,0
органические вещества:
при прокаливании32,9–21,743,548,5
при экстракции хлороформом16,0–12,618,428,6
вещества, нерастворимые в HCl41,3–88,635,516,8

ионы металлов*

Feобщ

9,5–12,514,92,02

Сu2+

0,020,030,008

Ca2+

2,8–4,85,614,12

Cr3+

0,019–0,0330,03-

Zn2+

0,13–0,180,2-

* – В сухом остатке

Были проведены испытания смеси «глина-нефтешлам». Количество шлама составляло 1 – 6% по массе. Вспучивание гранул проводилось в двуступенчатом режиме, интервал термоподотовки 250–280 °С, температурный интервал вспучивания образцов 1130–1150 °С. В результате испытаний установлено, что полученный материал соответствует ТУ 21–1284739–12–90.

Проведенные на АО «Керамзит» производственные испытания показали, что указанные выше нефте- и маслошламы можно использовать в качестве вспучивающей добавки при производстве керамзита (объемная насыпная плотность 420–600 кг/м3), показатели прочности которого соответствуют ГОСТ 9757–80.

В ЯГТУ разработана технология утилизации нефтеотходов с установки «Альфа – Лаваль». Была предпринята попытка заменить наполнитель и мягчитель в рецептуре резиновых смесей для амортизаторов на основе каучуков СКИ -3 и СКД этими отходами.

Наилучшие результаты получили при замене 5 массовых частей технического углерода П‑324 на 5 массовых частей отхода. Пластичность смеси практически не изменилась, а прочность при растяжении и относительное удлинение увеличились. Замена 10 массовых частей технического углерода П‑324 и 5 массовых частей вазелинового масла на 10 массовых частей отхода позволила несколько увеличить пластичность и прочность при растяжении, а также относительное удлинение при разрыве по сравнению с контрольной пробой.

Производственные испытания опытной резины, полученной с использованием отхода с установки «Альфа – Лаваль» на заводе РТИ, показали, что ее характеристики соответствуют характеристикам серийной резины, т.е. требованиям нормативной документации.

3.2 Утилизация кислых гудронов

Другим крупнотоннажным отходом нефтехимии являются кислые гудроны. Они образуются при очистке смазочных и медицинских масел, светлых нефтепродуктов, производстве флотореагентов и сульфонатных присадок. Очистку нефтепродуктов серной кислотой проводят с целью удаления непредельных, серо-, азотосодержащих и смолистых соединений, которые обусловливают малую стабильность топлив при хранении, нестабильность цвета и ухудшают некоторые эксплуатационные свойства.

Кислые гудроны представляют собой смолообразные высоковязкие массы различной степени подвижности, содержащие разнообразные органические соединения, свободную серную кислоту и воду. Несмотря на сокращение применения серной кислоты для очистки масел и парафинов и прекращение ее использования для очистки керосинов и бензинов, количество сернокислотных отходов весьма значительно. Только в заводских прудах-накопителя

Подобные работы:

Актуально: