Измеритель коэффициента шума
Шумы представляют собой важную проблему в науке и технике, поскольку они определяют нижние пределы, как в отношении точности любых измерений, так и в отношении величины сигналов, которые могут быть обработаны средствами электроники.
Отношение сигнал-шум (с/ш) радиоприемных систем - это очень важный критерий в системах электросвязи. Современные приемные устройства радиолокационных станций, аппаратуры связи, навигации должны обнаруживать и обрабатывать слабые радиосигналы. К факторам, которые ограничивают их чувствительность, относятся собственные шумы приемно-усилительных устройств. Для характеристики уровня собственных шумов приемных устройств и отдельных узлов и блоков применяются параметры: коэффициент шума (КШ) и температура шума входа устройства.
Высокое отношение сигнал шум на выходе приемника означает высокое качество связи аналоговых систем, низкую вероятность ошибки цифровых систем. Достижение этих характеристик путем увеличения мощности передатчика или коэффициента усиления антенны (то есть размеров антенны) не всегда возможно из-за технических и экономических ограничений, поэтому уменьшение генерации шума приемными устройствами часто является единственным путем увеличения помехозащищенности систем связи.
Коэффициент шума приемного устройства или любого линейного четырехполюсника определяется соотношением (тык). Как следует из (тык), коэффициент шума показывает, во сколько раз отношение сигнала к шуму на выходе четырехполюсника уменьшается по сравнению с аналогичным отношением на его входе. Коэффициент передачи реальных четырехполюсников имеет частотную зависимость, поэтому и коэффициент шума в общем случае также зависит от частоты и полосы частот, в которой производятся измерения.
Методы измерения коэффициента шума
Измерение коэффициента шума сводится к измерению соотношения мощностей шумовых сигналов на выходе исследуемого устройства при определенным образом изменяемом уровне мощности шумового сигнала на его входе.
Наиболее простым и распространенным в повседневной практике методом измерения коэффициента шума приемно-усилительных устройств (ПУУ) является метод двух отсчетов. Метод состоит в поочередной подаче на вход измеряемого устройства шумовых сигналов с известными значениями температуры шума Т1 и Т2 (Т1 < Т2) и измерении уровня сигналов на его выходе. При поочередной подаче на вход измеряемого ПУУ шумовых сигналов показания измерителя мощности будут пропорциональными (тык). Решив совместно (тык) и (тык), получим (тык).
Измерение коэффициента шума приемно-усилительных устройств
Измерение выполняется в два этапа: вначале проводится калибровка измерительного тракта с подключением генератора шума к входу измерителя (тык), при которой измеряется собственный коэффициент шума измерителя во всем частотном диапазоне при двух различных температурах источника шума (включенное и выключенное состояние ГШ). Далее присоединяется исследуемое устройство между выходом ГШ и входом измерителя и проводится измерение его характеристик (тык).
Структурная схема, описание работы
При выборе схемы построения ИКШ я опирался на результаты обзора современных измерителей коэффициента шума и технические требования, предъявляемые в задании на проектирование (диапазон рабочих частот, полоса пропускания фильтров ПЧ по уровню -3 дБ). Выбор аналогов осуществлялся по следующим критериям:
ИКШ должен отвечать современным требованиям и отображать главные принципы построения современных приборов;
ИКШ должен иметь перспективную конструкцию.
По этим критериям были отобраны измерители коэффициента шума фирмы Agilent Technologies. Таким образом, структурная схема ИКШ будет выглядеть так, как показано на (тык). ИКШ состоит из следующих основных блоков: преобразователь частоты; блок синтезаторов частот; ЦОС ПЧ (блок цифровой обработки сигнала ПЧ); блок управления;
модулятор ГШ.
Преобразователь частот осуществляет перенос спектра шумового сигнала из входного диапазона 0,01…4 ГГц на промежуточную частоту, в блоке производится необходимое усиление и фильтрация сигнала. В качестве сигналов гетеродинов используются сигналы из блока синтезаторов частот. В блоке цифровой обработки (ЦОС ПЧ) сигнал оцифровывается, фильтруется и детектируется. Блок управления предназначен для управления работой блоков ЦОС ПЧ, синтезаторов частот, модулятора ГШ и обмена данных с ЭВМ. ЭВМ обеспечивает панорамное отображение результатов измерений и выполняет ряд вычислительных функций. Модулятор ГШ используется для управления полупроводниковым генератором шума, а также для обеспечения питания ГШ стабилизированным напряжением.
Для преобразователя частоты выбрана супергетеродинная схема с тройным преобразованием частоты, аналогичная примененной в преобразователе частот ИКШ фирмы Agilent. При первом преобразовании частоты используется высокая промежуточная частота (Fпч1 = 9470 МГц), что позволяет подавить частоты зеркального канала (Fзерк = 18,95 ГГц - 26,94 ГГц) ФНЧ с фиксированной настройкой. При втором преобразовании частоты, сигнал переносится на более низкую промежуточную частоту (Fпч2 = 1070 МГц). Частота зеркального канала (Fзерк2 = 7,33 ГГц) подавляется полосовым фильтром первой промежуточной. При третьем преобразовании частоты, сигнал переносится на третью промежуточную частоту (Fпч3 = 70 МГц). Частота зеркального канала (Fзерк3= 930 МГц) подавляется полосовым фильтром второй промежуточной частоты
Принцип работы ИКШ
Шумовой сигнал из диапазона входных частот 10 - 4000 МГц поступает на входной управляемый аттенюатор. Входной аттенюатор предназначен для регулирования уровня мощности входного сигнала. Ослабление аттенюатора регулируется в диапазоне 0 дБ - 60 дБ с шагом 20 дБ. Усиленный малошумящим усилителем сигнал переносится вверх на частоту МГц. С помощью входного ФНЧ осуществляется подавление частот выше 5 ГГц, которые могут ввести усилители преобразователя в насыщение. На частоте сигнал усиливается и его спектр переносится вниз на частоту МГц. Полосно-пропускающий фильтр, расположенный перед вторым смесителем подавляет паразитные каналы второго преобразования. Третий смеситель осуществляет частотное преобразование на третью промежуточную частоту МГц. На частоте сигнал усиливается, проходит через набор переключаемых полосно-пропускающих фильтров, определяющих полосу измерения, и поступает в блок цифровой обработки, где оцифровывается, фильтруется и детектируется. На выходе АЦП получается двоичное представление аналогового сигнала, которое затем обрабатывается арифметически цифровым сигнальным процессором (DSP) и результаты измерений отображаются на ЭВМ.
Результирующий коэффициент шума преобразователя частоты определяет собственный коэффициент шума ИКШ и не должен превышать требуемый в задании. По техническому заданию требуется обеспечить собственный коэффициент шума измерителя - не более 8 дБ. Выбор элементной базы блока РПТ-04 начнем с активных элементов.
К техническим характеристикам первого смесителя предъявляются особенно жесткие требования, так как: первые каскады цепи очень сильно влияют на коэффициент шума всей цепи в целом, следовательно, нужно подобрать смеситель с минимально возможными вносимыми потерями и минимально возможным значением коэффициента шума. Что же касается второго и третьего смесителя, то к ним предъявляются менее жесткие требования. При выборе второго и третьего смесителей важно учесть вносимые потери, а также обратить внимание на их цену и доступность.
К техническим характеристикам усилителей предъявляются следующие требования:
· возможность работы в данном диапазоне частот;
· как можно меньший коэффициент шума;
· достаточный коэффициент усиления;
· доступность и низкая цена.
К техническим характеристикам пассивных элементов схемы (фильтрам, аттенюаторам, переключателям) относится вносимое затухание, чем оно меньше, тем меньше значение коэффициента шума всего тракта.
По техническому заданию требуется обеспечить следующие значения полосы пропускания фильтров ПЧ по уровню -3 дБ: 3 МГц (дополнительно 0.3 МГц). Для обеспечения двух полос измерения требуются два ППФ настроенных на одну частоту, но имеющих различные полосы пропускания. В качестве таких фильтров были выбраны ППФ на поверхностных акустических волнах (ПАВ) фирмы SAWTEK, они обладают компактными размерами и выпускаются большим количеством производителей с различными характеристиками. Многие производители выпускают серии ПАВ фильтров на 70 МГц и 140 МГц. Фильтры этих серий отличаются только полосами пропускания, поэтому значение третьей промежуточной частоты принято равным 70 МГц.
Результаты расчетов собственного коэффициента шума и коэффициента усиления всего радиоприемного тракта в программе СВЧ - моделирования Microwave Office 2004 представлены на плакате (тык). Как видно из графика требование по собственному коэффициенту шума измерителя - не более 8 дБ, заложенное в ТЗ, выполняется.
Структурная схема блока ЦОС представлена. Обычно, прежде чем подвергнуться реальному аналого-цифровому преобразованию, аналоговый сигнал проходит через цепи нормализации, которые выполняют такие функции, как усиление, аттенюация (ослабление) и фильтрация. Для подавления нежелательных сигналов вне полосы пропускания необходим ФНЧ или ПФ. Аналого-цифровой преобразователь (АЦП) - это устройство, которое осуществляет преобразование аналогового сигнала в цифровую форму. При преобразовании (или так называемом процессе дискретизации) происходит замер амплитуды сигнала, и его величина записывается в числовой двоичной форме. АЦП производит выборку с постоянной частотой (частотой дискретизации), которая задается внешним опорным генератором. Использование отдельного опорного генератора для АЦП является предпочтительным, поскольку сигнал внутреннего генератора может иметь высокий уровень шумов и привести к возникновению эффекта дрожания апертуры в АЦП, увеличивающего уровень шумов преобразования. В связи с быстрым развитием технологии смешанной аналогово-цифровой обработки сигналов, АЦП и ЦАП оснащаются цепями нормализации, а также буферами памяти, специально предназначенными для связи с ПЛИС.
При выборе АЦП важно учесть такие характеристики как: разрядность, частота дискретизации, SINAD, SNR, SFDR, наличие управляемых логических входов (Dither, Randomizer, PGA - усилитель с программируемым коэффициентом усиления), а также обратить внимание на их цену и доступность. Analog Devices и Linear Technology - мировые лидеры в производстве интегральных схем (ИС) для преобразования сигналов. ИС AD9461 и LTC2208 - первые представители нового семейства быстродействующих 16-битных АЦП, обеспечивающие высокую максимальную частоту дискретизации 130 МГЦ, удобные в применении, имеющие высокие динамические характеристики и при этом весьма конкурентоспособную цену.
LVDS (Low Voltage Differential Signaling) означает передачу цифровых данных дифференциальными сигналами. Это направление передачи данных использует очень малые перепады дифференциального напряжения (до 350 мВ) на двух линиях печатной платы. Дифференциальный метод передачи используется в LVDS, поскольку обладает меньшей чувствительностью к общим помехам, чем простая однопроводная схема. Достоинством дифференциального метода является то, что шумы, наводящиеся на двухпроводной линии, симметричны и не нарушают дифференциального сигнала
В экономической части дипломного проекта произведен расчет сметы затрат на разработку. В качестве аналога для сравнения с разрабатываемым устройством использовался измеритель коэффициента шума (ИКШ) Agilent N8973A.
Дополнительно:
На практике разрешение АЦП ограничено отношением сигнал/шум входного сигнала. При большой интенсивности шумов на входе АЦП различение соседних уровней входного сигнала становится невозможным, то есть ухудшается разрешение. При этом реально достижимое разрешение описывается эффективной разрядностью (effective number of bits - ENOB), которая меньше, чем реальная разрядность АЦП и определяется следующим образом:
Динамический диапазон, свободный от гармоник (SFDR) - отношение среднеквадратичного значения амплитуды сигнала к среднеквадратичному значению пикового побочного спектрального состава.
Показатель сигнал/шум/искажения (SINAD или S/N+D) - отношение среднеквадратичного значения амплитуды сигнала к среднему значению корня из суммы квадратов всех других спектральных компонентов, включая гармоники.
Отношение сигнал/шум или отношение сигнал/шум без гармоник (SNR) - отношение среднеквадратичного значения амплитуды сигнала к среднему значению корня из суммы квадратов всех других спектральных компонент, исключая первые пять гармоник.