Математична модель транспортної системи підприємства

АНОТАЦІЯ

104 стор.,27 рис., 4 табл., 20 літер. джерел.

В роботі розглянуті проблеми побудови транспортної системи підприємства. Запропонована трьохрівнева транспортна система, представляюча собою транспортну мережу, пов`язану вертікальними та горизонтальними зв`язками. Проаналізовані теоретичні роботи в галузі транспортних систем, мереж та потоків.

Розроблено оригінальну математичну модель транспортної системи підприємства на трьох рівнях. Вона базується на основних положеннях теорії потенціалу. Приведено вираз для стаціонарної швидкості обігу матеріального транспорту.

Побудовано також імітаційну модель на базі програмного пакету Stratum. В результатів "прогону" моделі зроблено необхідні візуалізації. Приведені результати залишків транспортуємих матеріалів на різних рівнях розглянутої транспортної системи. Ці показники зрівняні з фактичними.

Ключьові слова: ТРАНСПОРТНА СИСТЕМА, ЦІНОВИЙ ПОТЕНЦІАЛ, ЩІЛЬНІСТЬ ВАНТАЖОПОТОКУ, ТРАНСПОРТНІ МЕРЕЖІ.


ЗМІСТ

ВСТУП

РОЗДІЛ 1. АНАЛІЗ ТРАНСПОРТНИХ СИСТЕМ ТА ІХ МОДЕЛЮВАННЯ

1.1 Керування транспортною системою

1.1.1.Характеристика транспорту як об'єкту керуваня

1.1.2 Моделювання транспортної системи

РОЗДІЛ 2. Транспортні потоки, планування та оптимізація

2.1 Задачі планування незалежних транспортних потоків

2.2 Узагальнені задачі про потоки

2.3 Багатопродуктові потоки

2.4 Задача планування перевезень як задача оптимізації взаємозалежних потоків на мережі

2.5 Двохрівнева система моделей планувания транспортних потоків

2.6 Модель нижнього рівня - оптимізація транспортних потоків на транспортних мережах окремих видів транспорту

2.7 Основні задачі оптимізації транспортних потоків

2.8 Математичні моделі, у яких враховується взаємозв'язок потоків

РОЗДІЛ 3 МАТЕМАТИЧНА МОДЕЛЬ ТРАНСПОРТНОЇ СИСТЕМИ ПІДПРИЄМСТВА

3.1 Структура моделі

3.2 Математичний опис моделі

3.3 Аналіз математичної моделі

РОЗДІЛ 4 ПОБУДОВА ІМІТАЦІЙНОЇ МОДЕЛІ ТРАНСПОРТНОЇ СИСТЕМИ

4.1 Основні властивості середовища проектування

4.2 Побудова імітаційної моделі

4.3 Аналіз результатів прогону імітаційної моделі

ВИСНОВКИ

СПИСОК ЛІТЕРАТУРИ

ВСТУП

В даний час транспортні системи займають головне положення у світовій економіці. Вони носять глобальний по суті справи характер і мають першорядне значення в незалежності чи то це транспорт енергоресурсів матеріалів, грошей або транспортні інформаційні системи, що у даний час бурхливо розвиваються. Проте як у нових у системах, що розвиваються, так і традиційних існує цілий комплекс проблем, що потребують невідкладного рішення. І більшість із них це економічні проблеми або проблеми, що зводяться до економічних, без залежності від їхньої початкової природи, що може бути також технічної.

До таких проблем можна віднести оптимальну надійність транспортних систем, раціональний розподіл транспортної мережі, оптимізацію перевезень, що по також залишається актуальної, а також вибір основних параметрів транспортної мережі або транспортної системи.

В даний час розвиток інформаційних технологій поряд із визначеними успіхами традиційних фундаментальних досліджень дозволяє по новому глянути на старі задачі і запропонувати більш точні рішення, що засновуються на досягненнях зокрема таких наук як Економічна кібернетика.

У умовах сучасної України існують як глобальні транспортні системи, у тому числі газова, що потребує удосконалення так і реконструкції, а також множина локальних мереж окремих підприємств. Необхідно зазначити, що при переході до ринкової економіки вони були в ряді випадків порушені. Виниклі нові зв'язки потребують визначеного осмислювання і розробці наукових підходів, базуючихся на переважно економічних критеріях.

Цим підходом, поза всяким сумнівом, є імітаційне моделювання, що дозволить вирішити задачі прийняття зважених управлінських рішень по удосконалюванню вантажопотоків не тільки на глобальному, але і на локальному рівні окремого промислового підприємства або фірми. Потребує притягнення для виконання повнообсяжних рішень усіх сучасних інформаційних технологій.


РОЗДІЛ 1. АНАЛІЗ ТРАНСПОРТНИХ СИСТЕМ ТА ІХ МОДЕЛЮВАННЯ

1.1 Керування транспортною системою

1.1.1 Характеристика транспорту як об'єкту керування

Транспорту належить особлива роль у народному господарстві країни, він зв'язує воєдино всі галузі народного господарства, забезпечуючи переміщення сировини, напівфабрикатів і готової продукції. Всі види транспорту: залізничний, морський, річкову, повітряну, автомобільну і трубопровідний тісно пов'язані між собою, створюючи єдину транспортну систему України. Вона являє собою сукупність шляхів повідомлення, транспортних вузлів, транспортних і вантажно-розвантажувальних засобів, що забезпечує перевезення вантажів і пасажирів із пунктів відправлення в пункти призначення і виконання відповідних вантажних операцій.

Транспортній системі властиві риси, властиві будь-якій іншій виробничій системі. Проте в порівнянні з іншими галузями народного господарства транспорт володіє цілим поруч специфічних особливостей, породжуваних характером виробничого процесу.

1. У процесі свого функціонування транспортна система не створює нового матеріального продукту, її продукцією є самий процес переміщення вантажів і пасажирів.

2. На відміну від продукції інших галузей транспортна продукція не взаємозамінна: перевиконання плану перевезень якогось вантажу між одними пунктами не може компенсувати невиконання перевезень того ж вантажу між іншими пунктами. Ця продукція не існує окремо від транспорту і не може провадитися в запас, тобто невиконання перевезень в один період часу не може бути компенсовано перевиконанням їх в інший період часу.

3. Засоби виробництва транспортної галузі розосереджені по всій країні і за її межами, велика частина їх знаходиться в постійному переміщенні. Масштаби діяльності галузі, розбивка їх об'єктів, динамічний характер виробничого процесу, вплив великого числа випадкових чинників обумовлюють надзвичайну складність керування транспортної, системою.

Необхідність опрацювання великого обсягу інформації, необхідної для прийняття керуючих рішень, за короткий період часу унеможливлює ефективне керування роботою транспорту без застосування математичних методів і сучасного обчислювальної техніки.

В даний час на кожному виді транспорту створені і продовжують розвиватися автоматизовані системи керування. Проте наявність відомчої роз'єднаності не дозволяє повною мірою оптимізувати транспортний процес. Недостатня координація роботи різних видів транспорту призводить до виникнення нераціональних перевезень, неефективному використанню транспортних засобів і зниженню швидкості перевезень. Затримки вантажів і простої рухливого складу в транспортних вузлах часто поглинають економію, одержувану за рахунок оптимізації перевезень у межах кожного виду транспорту.

В даний час назріла об'єктивна необхідність у створенні єдиної автоматизованої системи керування усіма видами транспорту, що повинна об'єднати АСУ окремих « видів транспорту і забезпечити ефективне використання всіх наявних ресурсів.

У основу функціонування єдиної АСУ транспортом країни повинний бути призначений принцип раціонального сполучення централізованого рішення загальнотранспортних задач і децентралізованого рішення задач кожного виду транспорту при дотриманні інтересів як народного господарства в цілому, так і кожного виду транспорту окремо.

До числа загальнотраснпортних задач, що повинні вирішуватися цією системою, ставляться:

- забезпечення взаємообміну АСУ різноманітних видів транспорту координація діяльності і розвитки різноманітних видів транспорту;

- оптимальний розподіл вантажопотоків між різними видами транспорту;

- визначення маршрутів і обсягів перевезень, виконуваних у змішаному повідомленні, тобто за участю декількох видів транспорту;

- ув'язування планів перевезення і перевалювання вантажів різноманітними видами транспорту;

- узгоджене керування роботою транспортних підприємств, що взаємодіють у транспортних вузлах;

- забеспечення взаємообміну АСУ різноманітних видів транспорту уніфікованою інформацією про роботу суміжних видів транспорту.

Створення автоматизованої системи керування транспортом країни зажадає рішення цілого ряду нових наукових проблем, зокрема розробки математичних методів і моделей для рішення задач оптимального керування транспортним процесом, у якому бере участь декілька видів транспорту.

Задача керування транспортною системою можна розділити на трьох основних класу: задача керування основною експлуатаційною діяльністю (перевезенням, перевалюванням і збереженням вантажів), розвитком транспортної системи (транспортних мереж, рухливого складу, вантажно-розвантажувальних устроїв і т.п.) і підтримкою працездатності транспортної системи (ремонтними роботами, постачанням, енергозабезпечення і т.п.).

Надалі ми обмежимося розглядом тільки задач керування основною експлуатаційною діяльністю, оскільки, з одного боку, саме в ході цієї діяльності створюється транспортна продукція, а з іншого боку, у зв'язку зі специфікою транспорту як галузі народного господарства задачі керування цією діяльністю відрізняються від більшості задач керування, що виникають в інших галузях.

Об'єктом керування основною експлуатаційною діяльністю є транспортний процес, тобто процес переміщення вантажів і пасажирів із пунктів зародження грузо- і пасажиропотоків у пункти їхній поглинання.

Через складність об'єкта керування якість керування їм оцінюється не по одному, а по цілому ряді показників, таких, як прибуток від виконання перевезень, експлуатаційні витрати, грузо- і пассажирообіг, обсяг перевезень, середня дальність перевезення 1 т вантажу, собівартість перевезень і ін.

Специфічною особливістю задач керування транспортним процесом, що відрізняє їх від задач керування в більшості інших галузей народного господарства, є те, що ці задачі формулюються як задачі керування різноманітними транспортними потоками (тобто потоками вантажів, пасажирів, транспортних засобів і т.п.), що переміщаються по транспортній мережі.

До числа основних із цих задач ставляться:

- розподіл вантажопотоків між видами транспорту;

- розподіл обсягів перевезень між виробничими підприємствами усередині кожного виду транспорту;

- керування перевезеннями, виконуваними транспортним підприємством, у тому числі визначення оптимальних маршрутів, графіків і розкладів прямування окремих транспортних засобів.

Складність цих задач і велика кількість що враховуються чинників унеможливлюють їхнє ефективне рішення без використання математичних методів оптимізації, в основу яких призначені моделі транспортних мереж і транспортних потоків.

1.1.2 Моделювання транспортної системи

Основу єдиної транспортної системи складає транспортна мережа: залізні й автомобільні дороги, внутрішні водяні шляхи, повітряні лінії, трубопровідні магістралі, залізничні станції, морські і річкові порти, шлюзи, аеродроми, насосні станції, пристані і т.п.

Моделлю транспортної мережі єдиної транспортної системи країни може служити граф G (K, А), множина вершин K якого являють собою транспортні вузли (станції, порти і т.п.), а множина дуг А - ділянки шляхів переміщення транспортних потоків (потоків рухливого складу, вантажів, пасажирів ) із пунктів відправлення в пункти призначення. Вершини мережі відповідають пунктам виробництва і споживання продукції, складам для збереження вантажів і пунктам зосередження транспортних засобів. Дугам мережі приписані такі характеристики, як протяжність, пропускна спроможність, витрати на переміщення транспортних засобів і т.п. Якщо переміщення транспортних засобів між пунктами може відбуватися тільки в однім напрямку, дуга транспортної мережі називається орієнтованой, у противному випадку - неорієнтованой.

Для зображення вершин (або вузлів) орієнтованих і неорієнотованих дуг використовуються відповідно кружки, лінії зі стрілками і лінії без стрілк. У більшості випадків можна замінити одну неориєнтовану дугу двома орієнтованими і напроти спрямованими дугами. У зв'язку з розподілом єдиної транспортної системи України на підсистеми, що відповідають окремим видам транспорту, транспортна мережа G(К, А) розпадається на ряд окремих підмереж Gмм, Ам), що обслуговуються різноманітними видами транспорту М = 1,...,. Ці підмережі мають загальні вершини, що подають транспортні вузли, у яких відбувається перевалювання вантажів з одного виду транспорту на інший. Для зручності побудови моделей планування перевезень вантажів кожний вузол реальної транспортної мережі, у якому відбувається взаємодія декількох видів транспорту, можна уявити в графі G (K, А) у виді декількох вершин, кожна з який відповідає виду транспорту. Ці вершини сполучені між собою парою напроти орієнтованих дуг, що означають перевалювання вантажів з одного виду транспорту на інший (1). Як приклад на рис. 1.1, а приведена схема загально транспортного вузла, у якому взаємодіють три види транспорту (залізничний, автомобільний і річковий), на рис.. 1.1, б - його уявлення в мережі G (K, А), де можливе перевалювання вантажів позначений штриховими стрілками.


Рис 1.1. Мережа загальнотранспортного вузла

У загальному випадку транспортна мережа являє собою мультиграф (граф із декількома дугами між одною парою вершин), що містить цикли.

Приклад фрагмента мережі G (K, А) для трьох видів транспорту приведений на рис.1.2. Вершини, у яких зароджуються транспортні потоки, називаються «джерелами», а вершини, у яких вони поглинаються, - «стоками». Окремі об'єкти, що переміщаються, або «протікають», із пунктів зародження транспортних потоків у пункти їхній поглинання, називаються «одиницями потоку». Будемо використовувати символ для позначення вершини i = 1,...,n « графа G (K, А) і символ (i, j) А для позначення орієнтованої дуги, що веде з , до -. Упорядкована послідовність вершин і спрямованих дуг мережі (1, 2), , (2, 3),..., , ( n-1, n),, така, що кінець попередньої дуги є початком наступної, називається шляхом (або маршрутом), що веде з вершини у вершину . При послідовність називається орієнтованим циклом або кільцевим маршрутом. Якщо будь-які дві вершини мережі можна з'єднати шляхом, те мережа називається зв`язаною. Якщо мережа не є зв`язаною, те її можна розбити на зв'язкові підмережі або компоненти зв`язані. Прикладом незв'язної транспортної мережі може служити підсікти шляхів повідомлень річкового транспорту, що складає з декількох не з`єднаних річкових басейнів.


Рис 1.2 Фрагмент мережі

Для аналізованого планового періоду відомо кількість вантажу, що потрібно відправити або доставити в ті або інші вузли мережі G (К, А). Перевезення і перевалювання вантажів здійснюється по дугах А мережі, пропускні спроможності яких обмежені. Вони вимірюються кількістю вантажу або транспортних засобів, що може бути переміщене по ним у період планування. На дугах, що відповідають перевезенням, ці обмеження виникають внаслідок обмежених можливостей ділянок перевезень, а на дугах перевалювання - внаслідок обмеженої переробної спроможності вантажно-розвантажувальних устроїв. Для кожної дуги мережі задані розміри, що виражають питомі грошові витрати і прибутки від перевезення (або перевалювання) одиниці вантажу відповідного роду визначеним видом транспорту. Якщо даний вантаж не може перевозитися по якийсь дузі, то вартість його перевезення покладається рівної достатньо великому позитивному числу, а прибуток від перевезення - достатньо великому негативному числу.

Рахується також, що задані пропускні спроможності вузлів транспортної мережі, що є слідством обмеженої ємності складів і власної обмеженої можливості транспортного вузла по переробці транспортних засобів і вантажів.

Розмірність загальнотранспортної мережі є надзвичайно велика. Наприклад, тільки на залізничній мережі число станцій нараховує декілька тисяч. При полігоні в 1000 пунктів, кожні два з який пов'язані тільки одною дугою (у дійсності їх може бути і більше), число маршрутів складає біля мільйона. У масштабах країни число вершин і дуг графа, що подає транспортну мережу, значно вище.

Внаслідок надзвичайно великої розмірності мережі G (K, А) важливими проблемами, що виникають при оптимальному планування перевезень, є агрегировання (об'єднання вузлів мережі і дуг) із метою скорочення їхні числа і декомпозиція (розбивка мережі G (K, A) на підмережі) із метою скорочення розмірності рішення кожної окремої задачі.

Найкращої є мережа, у якій виділені всі постачальники і споживачі вантажів. Теоретично це підвищує точність планових розрахунків. Проте число постачальників і споживачів може досягати десятків, а й навіть сотень тисяч, що робить розрахунок перевезень по такій мережі неможливим без агрегування.

Найбільше прийнятним варто вважати агрегування постачальників і споживачів по адміністративно-територіальній ознаці. Це може означати, що в якості пункту споживання (або виробництва) приймається або адміністративний центр регіону (області), або деякий умовний пункт. При цьому за основу можна прийняти існуючий розподіл транспортної мережі на мережі економічних районів, областей. Основу єдиної транспортної мережі складає магістральна мережа, по якій відбувається обмін продукцією між економічними районами (регіонами). Вона є мережею достатньо високого ступеня агрегування, а більш низьким ступенем укрупнення є магістральна мережа значного економічного району, у якому обмін вантажами здійснюється між низовими територіально-виробничими комплексами. Мережею третього порядку розукрупнення може бути місцева транспортна мережа, що подає собою сукупність шляхів повідомлення економічних підрайонів між господарськими пунктами.

Чим більше період планування, тим більше укрупненої повинна бути транспортна мережа. Відповідно до цого поточне планування переважно має справа з магістральними міжрайонними і внутрішніми мережами, а оперативне планування - із внутрішніми і місцевої транспортними мережами.

На основних видах транспорту, крім трубопровідного, транспортний процес має дискретний характер, тобто визначена кількість вантажів (пасажирів) і рухливого складу відправляються в окремі моменти часу.

У тих випадках, коли розмір періоду планування значно перевищує тривалості - транспортних операцій, можна не враховувати позицію кожного що переміщається об'єкта в окремі моменти часу і перейти до розгляду деякого стаціонарного безупинного транспортного потоку.

При оперативному плануванні і регулюванні тривалість транспортних операцій стає порівнянної з періодом планування і регулювання, і необхідно розглядати динамічні потоки вантажів, пасажирів і транспортних засобів.

Всі транспортні потоки, що існують на транспортній мережі, діляться на декілька основних груп: потоки вантажів, потоки контейнерів, у яких знаходяться вантажі, потоки транспортних засобів, пасажиропотоки і т.д.

На залізничному транспорті існують такі потоки:

- вантажів;

- пасажирів;

- вагонів, що обслуговують перевезення вантажу на всьому протязі залізничної частини перевезення до перевалювання на інший вид транспорту (за винятком залізничного порома) або пункту розаантаження;

- локомотивів, що можуть змінюватися й у середині залізничного етапу перевезення в зв'язку з переформуванням вантажних поїздів, переходом поїзда на ділянку з іншим видом тяги, на пар і т.д.;

- контейнерів, шлях проходження яких при прямих і змішаних перевезеннях (без розвантаження з контейнерів або навантаження в них у проміжних пунктах) збігається з потоком вантажів. Проте на відміну від вантажу контейнери повинні бути відправлені обернуті з іншим вантажем або порожняком. Це ставиться і до інших видів тари, що підлягає поверненню, а також до контейнерів.

На водяному транспорті існують потоки вантажів, контейнерів, пасажирів, самохідних барж, несамохідних барж і буксирів.

На автомобільному і повітряному транспорті існують потоки автомобілів і літальних апаратів, контейнерів і вантажів.

На трубопровідному транспорті існує поки тільки потік вантажів, але з упровадженням пневматичних і інших трубопроводів поряд із потоком вантажів буде існувати і потік тари.

Кожний із цих потоків може бути, у свою чергу, розділений на підгрупи відповідно до роду вантажу, типом транспортних засобів і т.п.

Слід зазначити, що потоки, що існують на транспортній мережі, не є незалежними, а тісно пов'язані між собою. Очевидно, наприклад, що для існування вантажопотоку або пасажиропотоку в якій ланки транспортної мережі необхідно, щоб по ньому протікав також потік транспортних засобів.


РОЗДІЛ 2. Транспортні потоки, планування та оптимізація

2.1 Задачі планування незалежних транспортних потоків

Однієї з поширених практичних задач, що зводяться до оптимізації незалежних транспортних потоків, є пошук максимального транспортного потоку з пункту його зародження в пункт поглинання, наприклад визначення максимального потоку вантажів, що може бути перевезений із пункту відправлення в пункт призначення по транспортній мережі з обмеженою пропускною спроможністю.

Ця задача формулюється в такий спосіб.

Задано транспортну мережу G (V, Е), у якій п = |V| - число вершин, а т =| Е| - число дуг. Кожній дузі (i,j) Е поставлено у відповідність невід’ємне число , називане її пропускною спроможністю і відповідною максимальною кількістю одиниць транспортного потоку, що може пройти по дузі.

Вершина s та V, із якої починається переміщення однорідного потоку, називається джерелом, а вершина t V, у якій воно закінчується, - стоком.

Шляхом із s и t в G (V, Е) називається послідовність вершин і дуг, така, що

s ≡ i1;(i1, i2); i2; (i2i3),…,(in-1,in);in≡t...

Однорідним транспортним потоком у мережі G (V, Е) називається множина чисел xij, таких, що

j ≠ s,t


Кількість потоку, що виходять із джерела або входять у стік,

Під задачею про максимальний потік розуміється задача пошуку в G (V, Е) потоку максимального розміру v, що протікає з s у t.

Існує багато різноманітних алгоритмів пошуку максимального потоку. Найбільше поширені з них перераховані в табл. 1 із указівкою джерела й оцінки числа операцій. Уявлення про тривалість обчислень можна одержати з табл..2 (10)

Таблиця.1-Алгоритми пошуку максимального потоку

Автор алгоритмуПомилка в загальному випадкуm=nm=n2k=m+n

Форд-Фалкенсон

Эдмонс-Карп

Диниц

Карзанов

Черкаський

Галил

(4)

(5)

(6)

(7)

(8)

(9)

0(vm)

0()

0()

0()

0()

0()

0()

0()

0()

0()

0()

0()

0()

0()

0()

0()

0()

0()

0()

0()

0()

Таблиця.2-Тривалість обчислень

Число вершин

Число

дуг

Алгоритм Форда-Фалкенсона, модифікація Эдмонса-Карпа, cАлгоритм Диница, cАлгоритм Карзанова, cАлгоритм Черкаського, c

100

200

300

400

500

600

700

800

900

1000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

17,0

68,3

154,7

285,1

-

-

-

-

-

-

4,2

9,6

14,3

20,0

24,9

41,0

41,7

46,7

57,3

54,5

5,3

11,8

17,7

24,8

30,0

48,0

50,9

59,6

69,7

66,9

2,7

7,4

9,4

14,7

22,7

14,1

24,5

34,5

38,4

43,5

Більш загальною задачею оптимізації однорідного транспортного потоку є задача пошуку такого потоку на транспортній мережі, витрати на переміщення якого є мінімальними. До задачі подібного роду зводяться, наприклад, задача визначення обсягів і шляхів доставки вантажів із пунктів відправлення в пункти призначення, що забезпечують мінімум транспортних витрат, а також задача визначення маршрутів прямування і кількості, використовуваних транспортних засобів, при яких загальні експлуатаційні витрати на одну перевізку вантажів мінімальні.

Відмінність даної задачі від попередньої полягає в тому, що для кожної дуги (i,j) Е задана вартість переміщення одиниці транспортного потоку і необхідно знайти потік заданого розміру v із джерела s у стік t, що мінімізує зважену суму потоків

Для рішення цієї задачі запропонована множина різноманітних алгоритмів і їхніх узагальнень. Серед. них алгоритми, засновані на застосуванні прямих і двоїстих симплекс-алгоритмів лінійного програмування й алгоритмів пошуку найкоротших шляхів. Одним із поширених алгоритмів є так називаний алгоритм дефекту (4), що дозволяє вирішувати задач про потік мінімальної вартості достатньо загального виду. Число операцій алгоритму дефекту оцінюється як 0(), де число К0, обумовлене на перших ітераціях алгоритму, не перевищує , п - число вершин мережі, т - число її дуг, а

Очевидно, можна замість 0() використовувати оцінку 0(). У (5) запропонована модифікація алгоритму дефекту з оцінкою числа операцій 0 ().

Алгоритми пошуку потоку мінімальної вартості застосовуються для рішення задач у дуже великих мережах. У роботах (11, 12) повідомляється про рішення прямими алгоритмами задач із 20000 вершин 450 000 дуг, а в (13) - про рішення однієї задачі з 3000 вершин і 35 000 дуг за 97 с на IВМ-360/67 і іншої задачі з 5000 вершин та 15 000 дуг за 113 с.

Пошук найкоротших шляхів. Окремими випадками задачі про транспортний потік мінімальної вартості, що подають і самостійний інтерес, є задача перебування найкоротшого шляху між двома пунктами транспортної сети G (V, Е) і задача пошуку маршруту, що забезпечує мінімальний час переміщення транспортного потоку. Довжиною шляху є сума довжин дуг, що входять у нього.

Кожній дузі (i, j) мережі поставлена у відповідність її довжина , або тривалість проходження одиниці транспортного потоку, що у загальному випадку може бути позитивним і негативним числом.

У ряді відомих алгоритмів робиться додаткове припущення про те, що G (V, Е) не містить циклів негативної довжини.

Очевидно, що якщо в джерело помістити одиницю потоку, а в стік одиничний попит, пропускні спроможності всіх дуг вважати безкінечними і відшукувати припустимий потік мінімальної вартості (за умови, що lij - вартість переміщення потоку), те, розв'язавши задачу про потік мінімальної вартості, знайдемо найкоротший шлях прямування цієї одиниці.

Проте у розрахунковому відношенні більш ефективними виявилися спеціальні, так називані комбінаторні алгоритми, аналізовані в даному розділі. У цих алгоритмах вихідні дані подані у виді списків дуг, тобто для кожної вершини дається список тих дуг (i, j), що інцидентні їй, разом із їхніми довжинами . Оцінки числа операцій алгоритмів приведені в табл. 3.Спочатку роздивимося основні алгоритми рішення задачі пошуку найкоротшого шляху між двома вершинами: 1 (джерело) і п (стік).

Таблиця 3 - Оцінки числа операцій алгоритмів

Автор алгоритмуОцінка числа операційАвтор алгоритмуОцінка числа операцій
Найкоротший шлях між двома вершинамиНайкоротші шляхи між усіма парами вершин

Беллман (14)

Дийкстра (15)

Беллман-Форд (16)

0(n2)

0(m log n)

0(m n)

Дийкстра (17)

Спира (18)

Флойд-Варшал (19,20)

Фридман (21)

0(mn log n)

0(n2(log n)2)

0(n2)

0(n)2,5

Метод Белмана. Скористаємося рівнянням Белмана для визначення найкоротшого шляху між вершинами 1 і n. Визначимо - довжину найкоротшого шляху з вихідної вершини 1 у вершину j за умови, що вершини пронумеровані числами 1, 2, 3,..., п. Шлях найкоротшої довжини знаходиться з такого рівняння:

j=2,3,…,n;uj=0

У результаті розрахунків знаходиться (якщо воно існує) дерево найкоротших відстаней із коренем у вершині 1, у якому довжина єдиного шляху з 1 у j дорівнює uj, j=2, 3,..., п.

Алгоритми Дийкстра. Роздивимося мережу G (V, Е), у котрої довжини lijусіх дуг позитивні. Тоді відомий алгоритм Дийкстра може бути записаний у такий спосіб.

Крок 0. Покласти

якщо (i,j)

у іншому випадку,

Актуально: