Датчики влажности

1. Общие сведения

Вода входит в состав окружающего воздуха и является необходимым компонентом для всех живых существ: людей и животных. Комфортность окружающих условий определяется, в основном, двумя факторами: относительной влажностью и температурой. Вы можете себя чувствовать вполне комфортно при температуре -30 °С в Сибири, где зимой воздух обычно очень сухой, но Вам будет совсем неуютно при температуре 0 °С в Кливленде, расположенном на берегу озера, где очень влажно. (Естественно, что здесь учитываются только климатические факторы и не рассматриваются экономические, культурные и политические). Работа многих также сильно зависит от уровня влажности. Как правило, все характеристики приборов определяются при относительной влажности 50% и температуре 20–25 °С. Рекомендуется поддерживать такие же условия и в рабочих помещениях, правда, здесь существуют исключения: например, в производственных комнатах Класса А влажность должна быть 38%, а в больничных операционных – 60%. Влага входит в состав большинства выпускаемых изделий и материалов. Можно сказать, что большую часть валового национального продукта любой страны составляет вода.

Для измерения влажности используются приборы, называемые гигрометрами.

Первый гигрометр был создан Джоном Лесли A760–1832. Чувствительный элемент гигрометра должен избирательно реагировать на изменение концентрации воды. Его реакцией может быть изменение внутренних свойств. Датчики для измерения влажности и температуры точки росы бывают емкостными, электропроводными, вибрационными и оптическими. Оптические газовые датчики определяют точку росы, в то время как оптические гигрометры измеряют содержание воды в органических растворах по поглощению излучения ближнего ИК диапазона в интервале 1.9…2.7 мкм.

Для количественного определения влажности и содержания воды применяются разные единицы. Влажность газов в системе СИ иногда выражается как количество паров воды в одном кубическом метре (г/м3). Содержание воды в жидкостях и твердых телах обычно задается в процентах от общей массы. Содержание воды в плохо смешиваемых жидкостях определяется как количество частей воды на миллион частей веса (ррт). Приведу несколько полезных определений:

1 Влагомер (<измеритель влажности>): измерительный прибор, предназначенный для измерения одной или нескольких величин влажности твердых или жидких веществ.

2 Гигрометр (<измеритель влажности>, <влагомер газов>): измерительный прибор, предназначенный для измерения одной или нескольких величин влажности газов.

3 Гигрограф: регистрирующий измерительный прибор, предназначенный для непрерывной записи значений величин влажности газов.

4 Датчик влажности; датчик: первичный измерительный преобразователь величин влажности в другие физические величины, например в электрические.

5 Гравиметрический метод: метод косвенного измерения величин влажности, заключающийся в выделении влаги из вещества и раздельном измерении массы влажного вещества и его сухой части либо выделенной влаги.

6 Испарительно-гравиметрический метод; метод высушивания: гравиметрический метод измерения влажности твердых веществ, основанный на испарительном способе удаления влаги из вещества.

7 Термогравиметрический метод; тепловой метод (<воздушно-тепловой метод>): метод высушивания, основанный на удалении влаги из вещества путем его нагревания.

8 Вакуумно-гравиметрический метод; вакуумный метод: метод высушивания, основанный на вакуумном способе удаления влаги из вещества.

9 Вакуумно-тепловой метод: метод высушивания, основанный на одновременном применении теплового и вакуумного способов удаления влаги из вещества.

10 Сорбционно-гравиметрический метод: гравиметрический метод измерения влажности газов, основанный на сорбционном способе выделения влаги из газов.

11 Конденсационно-гравиметрический метод: гравиметрический метод измерения влажности газов, основанный на конденсационном способе выделения влаги из газов.

12 Кулонометрический метод: метод косвенного измерения влажности газов, основанный на сорбционном способе выделения влаги из газа и последующем измерении количества электричества, необходимого для электролитического разложения этой влаги.

13 Психрометрический метод: метод косвенного измерения влажности газов, основанный на зависимости понижения температуры (охлаждения) смоченного твердого тела от влажности окружающего газа.

14 Психрометр: устройство для реализации психрометрического метода измерения, содержащее сухой и смоченный термометры.

15 Аспирационный психрометр: психрометр, снабженный аспиратором – устройством для обдувания термометров анализируемым газом.

16 Психрометрическая формула: математическое уравнение, выражающее зависимость какой-либо величины влажности газа от разности температур сухого и смоченного термометров

17 Психрометрический коэффициент: коэффициент в психрометрической формуле, зависящий от конструкции психрометра и скорости обдува термометров.

18 Психрометрический гигрометр: гигрометр, принцип действия которого основан на психрометрическом методе измерения, автоматическом вычислении величины влажности и представлении ее значения на отсчетном устройстве.

19 Конденсационный метод: метод измерения точки росы (инея), заключающийся в охлаждении газа до температуры выпадения конденсата (росы или инея) и измерении этой температуры.

20 Равновесный метод: метод косвенного измерения влажности твердых веществ, заключающийся в измерении влажности газа, находящегося в гигротермическом равновесии с этими веществами.

21 Диэлькометрический метод: метод косвенного измерения влажности веществ, основанный на зависимости диэлектрической проницаемости этих веществ от их влажности.

22 Метод Фишера: химический метод измерения влажности твердых и жидких веществ заключающийся в экстрагировании влаги из пробы вещества растворителем и последующем титровании ее специальным раствором Фишера.

23 Оптические методы: методы косвенного измерения влажности газов, основанные на зависимости их оптических свойств от влажности.

24 Нейтронный метод: метод измерения влажности твердых веществ, заключающийся в замедлении быстрых нейтронов на ядрах водорода (протонах) и измерении интенсивности потока образующихся медленных нейтронов.

25 Деформационный гигрометр (датчик влажности): гигрометр (датчик), принцип действия которого основан на зависимости деформации чувствительного элемента от влажности газа.

26 Волосяной гигрометр (датчик влажности): деформационный гигрометр (датчик), в котором в качестве чувствительного элемента использован волос, например человеческий.

36 Пленочный гигрометр (датчик влажности) (<мембранный гигрометр>): деформационный гигрометр (датчик), в котором в качестве чувствительного элемента использована влагочувствительная пленка, например животного происхождения.

37 Резистивный влагомер (гигрометр, датчик влажности): влагомер (гигрометр, датчик), принцип действия которого основан на зависимости электрического сопротивления чувствительного элемента от влажности вещества

38 Емкостный влагомер (гигрометр, датчик влажности): влагомер (гигрометр, датчик), принцип действия которого основан на зависимости электрической емкости чувствительного элемента от влажности вещества.

39 Электролитический гигрометр (датчик влажности газа): резистивный гигрометр (датчик влажности газа), в котором в качестве чувствительного элемента использована пленка раствора соли.

40 Электролитический подогревный гигрометр точки росы (датчик точки росы); подогревный гигрометр (датчик): электролитический гигрометр (датчик влажности газа) с подогревом, вследствие которого сопротивление чувствительного элемента поддерживается на постоянном уровне, а температура равновесия служит мерой точки росы окружающего газа.

41 Пьезосорбционный гигрометр (датчик влажности газа): гигрометр (датчик влажности), принцип действия которого основан на зависимости частоты колебаний или добротности пьезоэлектрического резонатора, покрытого влагосорбирующим слоем, от влажности окружающего газа.

42 Нейтронный влагомер: влагомер твердых веществ, принцип действия которого основан на нейтронном методе измерения.

В воздухе всегда содержится определенное количество влаги в виде водяного пара. Там, где наличие водяного пара приводит к возникновению химических, физических и биологических процессов или оказывает влияние на эти процессы, большое значение имеет постоянный контроль за влажностью воздуха. Для определения количества влаги имеются две измерительные величины. Различают абсолютную и относительную влажность.

Абсолютная влажность (точка насыщения)

Абсолютная влажность Fabs показывает такое количество водяного пара, которое содержится в определенном обьеме воздуха.

Воздух, как смесь газа и пара, всегда содержит водяной пар. Водяной пар создает определенное давление, которое называют давлением водяного пара. Оно является частью всего барометрического давления газа.

Давление водяного пара и соответственно абсолютная влажность воздуха могут повышаться при определенной температуре только до предела насыщения. Это максимально возможное давление называют давлением насыщения. Температурная зависимость давления насыщения изображается кривой давления водяного пара.

Давление окружающей среды или наличие других газов не оказывает влияния на кривую давлений водяного пара. Влажность насыщения достигается максимальным количеством водяного пара, смотри диаграмму.

Точка насыщения

При дальнейшем поступлении водяного пара образуется конденсация. Избыточное количество водяного пара проявляется в виде дождя, тумана или конденсата. Насыщенное состояние при этом сохраняется. Если насыщенный теплый воздух охлаждается, то также происходит конденсация. Теперь охлажденный воздух будет впитывать меньше влаги. Температура, при которой это происходит, называется температурой точки насыщения. Она указывается в °С. С помощью точки насыщения можно установить давление водяного пара влажного воздуха по кривой давления водяного пара. Итак, точка насыщения является единицей измерения количества воды во влажном воздухе. Величина абсолютной влажности воздуха подбирается в зависимости от данных расчетных требований. Различные размерности имеют постоянное соотношение друг с другом, смотри диаграмму.

Относительная влажность

Относительная влажность воздуха это отношение фактически имеющейся, т.е. абсолютной влажности воздуха Fabs к максимально возможной влажности воздуха Fsat при данной температуре. Относительная влажность воздуха представляет собой безразмерную величину. Она является передаточным числом и указывается в%.

При высокой температуре воздух может поглощать больше влаги чем при низкой. Максимальная влажность, которую может поглотить воздух, называется влажностью насыщения. До насыщения давление водяного пара и следовательно относительная влажность пропорциональна всему барометрическому давлению. Так как давление насыщения зависит только от температуры, относительная влажность воздуха также зависит от температуры. Относительная влажность уменьшается, если температура повышается и наоборот. Влияние колебаний температуры на относительную влажность может быть значительным.

Зависимости давления насыщенного пара над плоской поверхностью воды и льда от температуры, полученные теоретически на основании уравнения Клаузиуса – Клапейрона и сверенные с экспериментальными данными многих исследователей, рекомендованы для метеорологической практики Всемирной метеорологической организацией (ВМО):

ln psw = -6094,4692T-1 + 21,1249952 – 0,027245552 T + 0,000016853396T2 + 2,4575506 ln T

ln psi = -5504,4088T-1 – 3,5704628 – 0,017337458T + 0,0000065204209T2 + 6,1295027 ln T,

где psw и psi – давление насыщенного пара над плоской поверхностью воды и льда соответственно (Па);

Т – температура (К).

Приведенные формулы справедливы для температур от 0 до 100ºC (для psw) и от -0 до -100ºC (для psi). В то же время ВМО рекомендует первую формулу и для отрицательных температур для переохлажденной воды (до -50ºC).

2. Методы и средства измерения влажности

Влажность и содержание молекул воды в веществах и материалах являются одним из наиболее важных характеристик состава. Уже указывалось, что влагу необходимо измерять в газах (концентрация паров воды), в смесях жидкостей (собственно содержание молекул воды) и в твердых телах в качестве кристаллизационной влаги, входящей в структуру кристаллов. Соответственно, набор методов и устройств для измерения содержания молекул воды в материалах оказывается весьма разнообразным.

Традиции измерительной техники, опирающиеся на повседневный опыт, привели к тому, что в измерениях влажности сложилась специфическая ситуация, когда в зависимости от влияния количества влаги нате или иные процессы необходимо знать либо абсолютное значение количества влаги в веществе, либо относительное значение, определяемое как процентное отношение реальной влажности вещества к максимально возможной в данных условиях. Если необходимо знать, например, изменение электрических или механических свойств вещества, в этом случае определяющим является абсолютное значение содержания влаги. То же самое относится к содержанию влаги в нефти, в продуктах питания и т.д. В том случае, когда необходимо определить скорость высыхания влажных объектов, комфортность среды обитания человека или метеорологическую обстановку, на первое место выступает отношение реальной влажности, например воздуха, к максимально возможной при данной температуре.

В связи с этим характеристики влажности, а также величины и единицы влажности подразделяются на характеристики влагосостояния и влагосодержания.

Влагосодержание – величины и единицы, выражающие реальное количество влаги в веществе. Основной характеристикой влагосодержания является абсолютная влажность, определяемая как количество влаги в единице объема:

<?xml version=">(1)

К этому классу характеристик можно отнести парциальное давление водяных паров в газах, абсолютную концентрацию молекул воды для газа, близкого к идеальному, определяемую как:

<?xml version=">(2)

где Т – абсолютная температура, n0 – постоянная Лошмидта, равная числу молекул идеального газа в 1 см3 при нормальных условиях, т.е. при p0= 760 Торр= 1015 Гпа и T0 = 273,1б К. Часто используется такая характеристика абсолютной влажности как точка росы, т.е. температура, при которой данная абсолютная влажность газа становится 100%. Эта характеристика привнесена в гигрометрию метеорологам и, т. к. является наиболее характерной при определении момента выпадения росы и определения ее количества.

Влагосостояние – процентное соотношение, равное отношению абсолютной влажности к максимально возможной при данной температуре:


<?xml version=">(3)

Относительная влажность может характеризоваться так называемым дефицитом парциального давления, равного отношению парциального давления влаги к максимально возможному при данной температуре. Очень редко в гигрометрических измерениях можно встретить дефицит точки росы.

Связь между температурой и максимально возможной абсолютной влажностью дается уравнением упругости насыщенных паров воды. Это уравнение имеет вид:

<?xml version=">(4)

На практике чаще пользуются таблицей давления насыщенных паров над плоской поверхностью воды или льда при различных температурах. Эти данные приведены в табл. 1.

Таблица 1. Давление насыщенных паров над плоской поверхностью воды

t°c

Рнк, мбар

Анкг/м3

t°C

Рнк, мбар

Анкг/м3

06,1084,5823144,92733,704
16,5664,9263247,55135,672
27,0555,2933350,30737,740
37,5755,6833453,20039,910
48,1596,1203556,23642,188
58,7196,5413659,42244,576
69,3477,0123762,76247,083
710,0137,5113866,26449,710
810,7228,0433969,93452,464
911,4748,6084073,77755,347
1012,2729,2064177,80258,366
t°c

Рнк, мбар

Анкг/м3

t°C

Рнк, мбар

Анкг/м3

1113,1199,8424282,01561,527
1214,01710,5154386,42364,839
1314,96911,2294491,03468,293
1415,97711,9864595,85571,909
1517,04412,78646100,8975,686
1618,17313,63347106,1679,640
1719,36714,52948111,6683,766
1820,63015,47649117,4087,772
1921,96416,47750123,4092,573
2023,37317,53451129,6597,262
2124,86118,65052136,17102,153
2226,43019,82753142,98107,268
2328,08621,07054150,07112,581
2429,83122,37955157,46118,125
2531,67123,75956165,16123,900
2633,60825,21257173,18129,917
2735,64926,74358181,53136,009
2837,79628,35459190,22142,700
2940,05530,04860199,26149,482
3042,43031,830

На стандартных справочных данных, приведенных в табл. 1, основаны практически все пересчеты характеристик влажности. На их основе можно, например, по известной абсолютной влажности и температуре найти относительную влажность, точку росы и т.д., выразить практически любую характеристику влажности газов.

Среди приборов для измерения влажности наиболее массовыми являются приборы для определения содержания воды в газах – гигрометры. Для измерения влажности твердых и сыпучих тел чаще всего используются те же гигрометры, только процесс подготовки пробы к анализу включает в себя перевод влаги в газовую фазу, которая затем и анализируется. Существуют в принципе методы непосредственного измерения содержания влаги в жидкостях и в твердых телах, например, методом ядерного магнитного резонанса. Приборы, построенные на таком принципе, достаточно сложны, дороги и требуют высокой квалификации оператора.

Гигрометры как самостоятельные приборы являются одними из самых востребованных измерительных приборов, поскольку с давних времен в них нуждались метеорологи. По изменению влажности, также как по изменению давления и температуры, можно предсказывать погоду, можно контролировать комфортность жизнеобеспечения в помещениях, контролировать различного рода технологические процессы. Например, контроль влажности на электростанциях, на телефонных станциях, на полиграфическом производстве и т.д. и т.п. является определяющим в обеспечении нормального режима функционирования.

Востребованность гигрометров породила разработки и изготовление большого количества различных типов приборов. Большинство измерителей влажности представляют собой датчики влажности с индикатором либо аналогового сигнала, либо сигнала в цифровой форме. Поскольку индикаторами являются в большинстве своем либо механические устройства, либо электроизмерительные приборы, рассмотренные в предыдущих разделах, остановимся на датчиках влажности, определяющих почти все функциональные возможности гигрометров.

Датчики гигрометров можно классифицировать по принципу действия на следующие типы:

· волосяные датчики, в которых используется свойство волоса изменять длину при изменении влажности;

· емкостные датчики, в которых при изменении влажности изменяется электрическая емкость конденсатора с гигроскопичным диэлектриком;

· резистивные датчики, в которых изменяется сопротивление проводника, на поверхность которого нанесен гигроскопический слой;

· пьезосорбционные датчики, в которых влага, поглощенная гигроскопическим покрытием, изменяет собственную частоту колебаний пьезокристалла, на поверхность которого нанесен гигроскопичный слой;

· датчик температуры точки росы, в котором фиксируется температура, соответствующая переходу зеркального отражения металлической поверхностью в диффузное;

· оптический абсорбционный датчик, в котором регистрируется доля поглощенной энергии света в полосах поглощения парами воды электромагнитного излучения.

Наиболее древний, наиболее простой и наиболее дешевый датчик влажности представляет собой обычный волос, натянутый между двумя пружинами. Для измерения влажности используется свойство волоса изменять длину при изменении влажности. Несмотря на кажущуюся примитивность такого датчика и на то, что процесс, лежащий в основе измерения, не определяется законами физики и поэтому не поддается расчету, гигрометры с волосяными датчиками изготавливаются в большом количестве.

Емкостные датчики влажности в настоящее время по массовости использования конкурируют и даже превосходят волосяные, поскольку по простоте и дешевизне они не уступают волосяным. Измеряемой физической величиной является емкость конденсатора, а это означает, что в качестве индикатора или выходного устройства может использоваться любой измеритель емкости. На подложку из кварца наносится тонкий слой алюминия, являющийся одной из обкладок конденсатора.

На поверхности алюминиевого покрытия образуется тонкая пленка окиси Al2O3. На окисленную поверхность наносится напылением второй электрод из металла, свободно пропускающего пары воды. Такими материалами могут быть тонкие пленки палладия, родия или платины. Внешний пористый электрод является второй обкладкой конденсатора.

Конструкция резистивного датчика влажности представляет собой меандр из двух не соприкасающихся электродов, на поверхность которого нанесен тонкий слой гигроскопического диэлектрика. Последний, сорбируя влагу из окружающей среды, изменяет сопротивление промежутков между электродами меандра. О влажности судят по изменению сопротивления или проводимости такого элемента.

В последнее время появились гигрометры, в основу работы которых положен фундаментальный физический закон поглощения электромагнитного излучения – закон Ламберта-Бугера-Бера. Согласно этому закону через слои поглощающего или рассеивающего вещества проходит электромагнитное излучение интенсивностью Iλ, равное:

<?xml version=">(5)

где Iλ – интенсивность излучения, падающего на поглощающий столб; N – концентрация поглощающих атомов (число молекул в единице объема); l – длина поглощающего столба, δλ – молекулярная константа, равная площади «тени», создаваемой одним атомом и выраженной в соответствующих единицах.

Пары воды имеют интенсивные полосы поглощения в инфракрасной области спектра и в области длин волн от 185 нм до 110 нм – в так называемой вакуумной ультрафиолетовой области. Имеются отдельные разработки по созданию инфракрасных и ультрафиолетовых оптических влагомеров, и все они имеют одно общее положительное качество – это влагомеры мгновенного действия. Под этим понимается рекордно быстрое установление аналитического сигнала для пробы, помещенной между источником света и фотоприемником. Другие особенности оптических датчиков определяются тем, что в инфракрасной области поглощение молекулами воды соответствует вращательно-колебательным степеням свободы. Это означает, что вероятности переходов, и, соответственно, сечения поглощения в законе Ламберта-Бугера-Бера зависят от температуры объекта. В вакуумной ультрафиолетовой области сечение поглощения от температуры не зависит. По этой причине ультрафиолетовые датчики влажности являются более предпочтительными, но инфракрасная техника, которая используется в ИК датчиках влажности, намного долговечнее и проще в эксплуатации, чем ВУФ техника.

У оптических датчиков имеется и один общий недостаток – влияние на показание мешающих компонентов. В инфракрасной области это различные молекулярные газы, например окиси углерода, серы, азота, углеводороды и т.д. В вакуумном ультрафиолете основным мешающим компонентом является кислород. Тем не менее можно выбрать длины волн в ВУФ, где поглощение кислорода минимально, а поглощение паров воды максимально. Например, удобной областью является излучение резонансной линии водорода с длиной волны А, = 121,6 нм. На этой длине волны у кислорода наблюдается «окно» прозрачности в то время, как пары воды заметно поглощают. Другой возможностью является использование излучения ртути с длиной волны 184,9 нм. В этой области кислород излучения не поглощает и весь сигнал поглощения определяется парами воды.

Одна из возможных конструкций оптического датчика влажности дана на рис. 4. Резонансная водородная лампа с окном из фтористого магния располагается на расстоянии в несколько миллиметров от фотоэлемента с катодом из никеля. Никелевый фотоэлемент имеет длинноволновую границу чувствительности -190 нм. Окна из фтористого магния имеют коротковолновую границу прозрачности 110 нм. В этом диапазоне длин волн (от 190 до 110 нм) в спектре водородной лампы присутствует только резонансное излучение 121,6 нм, которое и используется для измерения абсолютной влажности без какой-либо монохроматизации.

У оптического датчика, схема которого изображена на рис. 4 есть еще одна особенность – возможность изменять чувствительность изменением расстояния от лампы до фотоприемника. В самом деле, с увеличением расстояния наклон характеристики dU/dN выходного сигнала от концентрации прямо пропорционален величине зазора между лампой и фотодиодом.

Важным качеством оптического датчика является следствие из закона Ламберта-Бугера-Бера, состоящее в том, что такой датчик нужно калибровать только в одной точке. Если, например, определить сигнал с прибора при какой-либо одной определенной концентрации паров воды, то отградуировать шкалу прибора можно расчетным путем на том основании, что изменение логарифма сигналов при различных концентрациях равно:

<?xml version=">(6)

где N – концентрация (число) молекул в единице объема; δλ – сечение поглощения, I – длина поглощающего промежутка.

Для определения относительной и абсолютной влажности на практике часто используются приборы, получившие название психрометров. Психрометры представляют собой два одинаковых термометра, один из которых обернут фитилем и смачивается водой. Мокрый термометр показывает температуру ниже, чем сухой термометр в том случае, если относительная влажность не равна 100%. Чем ниже относительная влажность, тем больше разность показаний сухого и мокрого термометров. Для психрометров различных конструкций составляются так называемые психрометрические таблицы, по которым находятся характеристики влажности.

Психрометр не очень удобен в эксплуатации, поскольку его показания не просто автоматизировать, и требуется постоянное увлажнение фитиля. Тем не менее именно психрометр является самым простым и вместе с тем достаточно точным и надежным средством измерения влажности. Именно по психрометру чаще всего градуируются гигрометры с волосяными, емкостными или резистивными датчиками.

В заключение кратко остановимся на методах измерения влажности жидкостей и твердых материалов. Наиболее распространенным является метод высушивания или выпаривания влаги из вещества с последующим взвешиванием. Обычно пробу высушивают до тех пор, пока не перестанет изменяться ее вес. При этом, естественно, делается два допущения. Первое – что вся сортированная и химически связанная влага при выбранном режиме выпаривания улетучивается. И второе – что вместе с влагой не испарится никакой другой компонент. Очевидно, что во многих случаях гарантировать корректность выполнения процедур выпаривания очень сложно. Другим универсальным методом измерения влажности жидких и твердых тел является метод, когда влага из них переходит в газовую фазу в каком-либо замкнутом объеме. В этом случае стандартизуют методику подготовки пробы, а измерения ведут одним из упомянутых типов гигрометров, предназначенных для измерений влаги в газовой фазе. С целью получения надежных результатов такие устройства калибруют по стандартным образцам влажности.

3. Измерение влажности психометрическим влагомером

Влажность газов, жидкостей и твердых материалов – один из важных показателей в технологических процессах. Влажность газов, например, необходимо измерять в сушильных установках, при очистке газов, в газосборниках, при кондиционировании воздуха и т.д. Измерение содержания воды в нефти, спиртах, ацетоне проводят в процессах нефтепереработки и нефтехимии, в пульпах – в производстве серной кислоты и минеральных удобрений. Измерение влажности твердых сыпучих материалов занимает важное место в производстве красок, минеральных удобрений, строительных материалов; влажность волокнистых материалов определяет качество продукции при производстве бумаги и картона.

Влажность газов в технологических процессах обычно измеряют психрометрическим методом.

Действие психрометрических влагомеров основано на измерении двух температур: температуры «сухого» термодатчика, помещенного в анализируемый газ, и температуры «мокрого» термодатчика, завернутого в чулок из влажной ткани, конец которой опущен в воду. За счет испарения воды этот термодатчик охлаждается до температуры меньшей, чем температура газа. С увеличением влажности газа испарение идет менее интенсивно и температура «мокрого» термометра растет. При влажности 100% вода вообще не будет испаряться и температуры обоих термодатчиков сравняются.

В промышленных влагомерах в качестве термодатчиков обычно используют термометры сопротивления, включенные. в схему для измерения отношения их сопротивлений, т.е. отношения температур «мокрого» и «сухого» термометров.

Из принципиальной схемы влагомера видно, что она состоит из двух неуравновешенных мостов, реохорда, усилителя, реверсивного электродвигателя и показывающего устройства. В плечи неуравновешенных мостов включены соответственно «сухой» (Rc) и «мокрый» (RM) термометры Выходной сигнал моста – напряжение U2 включен встречно с напряжением U3, снимаемым о движка реохорда. Их разность AU приложена к входу усилителя. Там она усиливается и приводит в действие реверсивный электродвигатель. Вал электродвигателя перемещает движок реохорда и связанную с ним стрелку показывающего устройства.

Состояние равновесия в схеме наступает при равенстве напряжений U2 и U3. При этом ΔU = 0, поэтому движок реохорда и стрелка прибора перестают перемещаться. Положение движка реохорода в момент равновесия зависит от отношения напряжений U1 и U2, а значит, от отношения температур «сухого» и «мокрого» термометров. Таким образом, положение стрелки прибора однозначно связано с измеряемой влажностью газа. Для измерения влажности жидкостей применяют как специальные влагомеры, так и приборы, измеряющие какое-либо свойство жидкости, если оно связано с ее влажностью. Например, одной из характеристик пульп является соотношение жидкость: твердое в ее составе. Эту величину измеряют обычно плотномерами. В тех случаях, когда из пульпы удаляется только жидкая фаза (выпаривание, фильтрование), показания плотномера будут определяться содержанием жидкости в пульпе. В этом случае плотномер выполняет функцию влагомера.

В специальных влагомерах для жидкостей используют емкостный и абсорбционный методы измерения.

Действие емкостных влагомеров основано на изменении диэлектрической проницаемости жидкости при изменении содержания в ней воды. Электрическая схема такого влагомера аналогична электрической схеме емкостного уровнемера. Изменение влажности жидкости приводит к изменению емкости

Сх и выходного напряжения моста U. Такими влагомерами измеряют содержание воды в нефти на нефтеперерабатывающих заводах. Диапазон измерения прибора 0–1%.

Принцип действия абсорбционных влагомеров для жидкости основан на поглощении водой энергии излучения в области спектра близкой к инфракрасной.

Жидкость пропускают через камеру, где через нее проходит поток излучения от источника. Так как в камере часть энергии поглощается влагой, энергия выходящего потока будет тем меньше, чем больше концентрация влаги в смеси.

Источником излучения служит лампа накаливания, приемником

Подобные работы:

Актуально: