Влияние микроэлементов на урожайность и качество волокна льна-долгунца

1. Обзор литературы

1.1. Народно-хозяйственное значение льна-долгунца

Лён-долгунец - древнейшее растение, которое оказало значительное влияние на развитие духовной и материальной культуры наших предков. При условии комплексного использования он является одной из перспективных сельскохозяйственных культур. Еще в древности его применяли для производства текстильных изделий и пищевых продуктов, а также как лекарственное растение. Окупаемость этой культуры реализуется не один год, поскольку ежегодно возобновляемое сырье может длительно использоваться как в текстильной, так и в других областях промышленности, обеспечивая занятость многих слоев населения(19).Лён-долгунец также называют “северным шёлком”. Главное его использование- на волокно, которое идет на изготовление различных тканей, обладающих, как известно, многими ценными свойствами. Изделия из льна красивы, добротны и прочны, легки и эластичны; они хорошо пропускают воздух и впитывают влагу (в несколько раз быстрее по сравнению с шелком, вискозой и даже хлопком). Прочность льняной пряжи на разрыв при одинаковой толщине в 2-3 раза выше хлопчатобумажной и шерстяной. В составе льняного волокна есть элементы кремнезема, предохраняющие его от гниения, что особенно важно для производства тканей технического назначения.

Из льна наша текстильная промышленность вырабатывает очень широкий ассортимент товаров бытового назначения: полотенца, белье, одежду, одеяла и другие изделия, и технического-брезент, приводные ремни, парусину, мешочный, упаковочный материалы, шпагат нитки, веревки и др.

Для нужд народного хозяйства можно использовать почти все растение льна-долгунца. Из семян, содержащих 35-37% жира, получают льняное масло, которое применяют для приготовления высококачественной олифы, а также лаков, красок, клеенок, линолеума, термоизоляционных проводов; среди технических масел оно по объему производства занимает первое место в мире.

В небольшом количестве рафинированное льняное масло применяют в промышленном консервировании продуктов, кулинарии и кондитерском производстве.

Жмых льняной содержит сырого жира до 7%, сырого протеина-34%, выход которого составляет около 58%. При экстракции масла из семян получают шрот, который по нормам содержит до 2,5% сырого жира и 36% сырого протеина влажностью-8-9%. По своей питательности жмых и шрот принадлежат к высококонцентрированным кормом, их охотно поедают все сельскохозяйственные животные. В 1 кг льняного жмыха содержится 1,15 корм. ед. и 260 г переваримого протеина. Для кормления животных используют и полову, которая составляет в среднем 15% общего урожая льна; 1 кг ее содержит 0,27 корм. ед. и 20 г переваримого протеина.

Льняная костра содержит до 64% целлюлозы и служит сырьем для производства бумаги, упаковочного и технического картона, фурфурола, вискозы, целлулоида. На некоторых льнозаводах имеются цехи по изготовлению из костры прессованных строительных плит. Отходы льноволокна- паклю используют в качестве упаковочного и конопаточного материала.

Лен-долгунец не только одевает и кормит, но и лечит. Он входит в число 200 растений, из которых изготовляют лекарственные препараты. Семена содержат белок, углеводы, органические кислоты, витамин А, ферменты. Их используют также для приготовления компрессов и припарок, а льняное масло широко практикуют в питании людей с нарушением обмена веществ, при атеросклерозе(22).

Посевы прядильного льна в мире составляют 1,5 млн. га, в странах СНГ - около 1 млн., в т. ч. на долю России приходится 51%, а Республики Беларусь- 20%.

В последние годы в целом по нашей республике достигнут уровень урожайности 6,2 ц/га. В Бобруйском, Гомельском, Слуцком районах урожайность составила соответственно 10,0; 10,5; 11,6 ц. волокна с гектара. Во Франции, например, стабильно получают 13-15 ц волокна с гектара, в Голландии - до 25.

Лён-долгунец даёт волокно, семена и другую продукцию переработки. В среднем в урожае льна-долгунца льносолома составляет 70-75%, семена- 10-15%, полова- 10-15%. Выход тресты из урожая соломы- 70%. Содержание волокна в соломе 20-25, в тресте- 28-32% (9).

Несмотря на всю ценность данной культуры, посевные площади льна-долгунца значительно уменьшить по сравнению с 1990 годам. Размещены посевы на территории республики неравномерно. Они в основном сосредоточены в Витебской, Гродненской и Минской области. На эти регионы приходится более 75% площади льна страны, на остальные области – менее 25%.

В настоящее время имеются все возможности для подъёма отрасли. В республике создано и районировано значительное количество сортов, которые обладают высокой продуктивностью и хорошими качествами льносырья. Наиболее слабым звеном при возделывании льна является широкая техническая оснащённость отрасли. В последние годы льноуборочные машины практически не приобретались, очень мало их для рулонирования льносырья, раздельной уборки этой культуры. Имеющаяся в льносеющих хозяйствах техника морально и физически устарела(17).

Резервом повышения урожайности и качества льнопродукции является более полное использование природных факторов и максимальная реализация биологического потенциала новых, высокопродуктивных сортов, совершенствование и разработка энергосберегающих агрохимических приемов, позволяющих создать оптимальные условия для роста и развития льна. Особое значение при этом приобретает оптимизация минерального питания растений с учетом биологических особенностей сортов и выявления их отзывчивости на условия питания(18).

1.2. Биологическая характеристика льна- долгунца

Лен принадлежит к семейству льновых- Linaceae. В это семейство входит 22 рода, из которых для практических целей используется преимущественно один род-лен- Linum. Этот род включает свыше 200 видов распространённых в умеренных и субтропических областях всех частей света.

Большая часть видов льна- дикорастущие растения, а некоторые дикие однолетние и многолетние виды культивируются как декоративные. Хозяйственное значение имеет культурный лён - Linum usitatissimum,широко используемый как прядильное и масличное растение(20).

Лён-долгунец- высокорослые(от 60 до 120 см и более) одностебельные растения, ветвятся только в верхней части(25). Корневая система состоит из главного стержневого корня, имеющего длину до 100-120 см, с расположением по всей длине короткими боковыми корнями первого порядка, которые имеют последовательные ветвления, редко выше четвертого порядка.

Лен-долгунец, который выращивают в условиях длинного дня на почвах с небольшим гумусовым горизонтом при небольшой площади питания, имеет слаборазвитую корневую систему-8-10% массы растения. Поэтому 80% их массы располагается в пахотном слое почвы. Это однолетнее растение, продуктивной частью его служит высокий, тонкий и прямой, высотой 60—125 см и больше светло-зеленый гладкий стебель, покрытый восковым налетом.

Лён-долгунец по толщине стебля делится на тонкостебельный—диаметр 0,8-1,2 мм., среднестебельный—диаметр 1,2-2 мм. и толстостебельный—2,1 мм и более. Диаметр стебля измеряют на уровне 1/3 части его высоты от места прикрепления семядольных листочков. Характеризуют стебель льна также сбежистосить, мыклость, тяжеловесность.

Сбежистость—форма стебля. При конусообразной форме стебля она выражена более сильно, при цилиндрической—менее. Стебли льна имеющие форму близкую к цилиндрической, обеспечивают больший выход и лучшее качество волокна.

Мыклость - отношение технической длины к его толщине. С увеличением этого показателя повышаются выход и качество волокна(28).

Стебель льняного растения состоит из нескольких тканей. Наружная ткань называется кожицей (эпидермис). Под кожицей расположена паренхима (соединительная ткань), состоящая из тонкостенных клеток, соединяющих остальные ткани стебля. В соединительной ткани залегает волокно в виде волокнистых или лубяных пучков. Это также и механическая часть стебля. Лубяные пучки расположены отдельными островками, сливаясь иногда в сложное кольцо. Кожица и паренхима с волокнистыми пучками и ситовидными трубками составляют поровую часть стебля. Затем кольцеобразно расположен камбий.

Камбий играет важную роль в формировании стебля. Он постоянно образует вторичную кору (наружу) и древесную (внутрь стебля). Волокнистые пучки залегают в наружной первичной коре, волокнистые клетки их дифференцируются из внутреннего слоя паренхимных клеток коры перицикла в конус нарастания.

Деятельность паренхимных клеток и камбия находится в постоянном антагонизме. При снижении деятельности камбия усиливается деятельность перицикла, в результате образуется большое количество клеток луба, что проявляется в загущенных посевах льна. Поэтому содержание волокна в стеблях в загущенных посевах больше, чем в разреженных.

Древесина состоит из клеток с утолщёнными стенками. Она содержит большое количество сосудов, проводящих от корня влагу и питательные вещества по всем подземным органам растения.

Сердцевина - это центральная часть стебля, состоящая из непрочных тонкослойных клеток. У созревшего растения клетки сердцевины разрушаются и внутри стебля образуется полость(9).

Самая ценная часть стебля - волокнистые пучки, которые состоят из сильно удлинённых веретенообразных клеток, элементарных волокон длиной в среднем 20-30 мм. Между собой и окружающими их тканями элементарные волокна соединены пектином. В зависимости от условий выращивания, а также сорта льна число элементарных волокон в волокнистом пучке колеблется от 19 до 50.

Волокно хорошего качества отличается достаточной длиной, высокой прочностью, блеском, эластичностью(28).

В густых посевах лен-долгунец представляет собой высокое одностебельное растение, примерно в верхней пятой его части с коротким соцветием - зонтиковидной кистью и двумя-тремя плодами - коробочками, в редких посевах до 10 коробочек и более. Содержание волокна в стебле от 20 до 35%. Стебель в виде вытянутого конуса расширен у основания и сужен в верхней части. Листья длиной 36-40 мм, шириной 2-4,4 мм пооче­редно расположены по винтовой линии, зеленые, со слабым восковым налетам, отмирают во время созревания льна. Цветки у льна-долгунца правильные, пятерного типа. Окраска лепестков обычно голубая, редко встречаются растения с белыми или розовыми лепестками в цветке. Тычинок с пыльниками - пять.

Лен-долгунец - растение самоопыляющееся, но не исключено и перекрестное опыление насекомыми, главным образом пчелами. В ясные жаркие дни цветок распускается в 5 - 6 ч утра, к 9-11 ч лепестки опадают. В пасмурные дни начало и конец цветения наступают на 1-2 ч позднее. На всей плантации цветение продолжается в среднем шесть - десять дней.

Плод у льна представляет собой шаровидную мелкую коробочку длиной 6,1-8,3 мм, шириной 5,7-6,8 мм. Она пятигнездная, каждое гнездо разделено неполной, обычно неопушенной перегородкой на два полугнезда, содержащих по одному семени. В производственных посевах число нормально развитых семян может быть меньше десяти (в зависимости от условий вегетации льна). Спелые коробочки остаются закрытыми и лишь при перестое на корню происходит их растрескивание и осыпание семян. При продолжительной влажной погоде они могут прорастать в коробочках.

Семя льна яйцевидной формы, плоское, со слегка загнутым и суженным носиком (зародышевый конец). Здоровые семена обычно имеют коричневую окраску разных оттенков - от светло, до темно-коричневых; поверхность их гладкая, глянцевая, обладают большой сыпучестью. Размеры семян льна-долгунца: длина от 3,2 до 4,8 мм, ширина от 1,5 до 2,2 мм, толщина от 0,5 до 1,2 мм, масса 1000 семян колеблется от 2,8 до 6 г. Хотя окраска и размер семян - наследственные признаки, однако на них влияют условия произрастания.

Семя состоит из трех основных анатомических частей: оболочки, эндосперма и зародыша. Оболочка защищает семена от вредных внешних воздействий -механических повреждений и попадания ядовитых веществ, особенно опасных для зародыша. Оболочка пропускает при определенных условиях кислород и воду.

Под оболочкой расположен эндосперм, богатый белком и жиром, используемый зародышем во время его роста. В спелом семени эндосперм и зародыш развиты относительно равномерно. Зародыш состоит из небольшого ко­решка, двух семядольных листочков и расположенной между ними почечки.

Лен-долгунец дает в урожае 70-75% стеблей, около 10-15% семян и 10-15% мякины. При высоких урожаях на долю стеблей приходится до 80%.

По сочетанию хозяйственно-ценных признаков стеблей льна: длине, толщине, цвету, анатомическому строению — можно примерно определить не только содержание волокна, его качество, но и технологию, а также условия выращивания льна. У стебля различают общую длину (расстояние от места прикрепления семядольных листочков до места прикрепления самой верхней коробочки соцветия растения) и техническую (расстояние от места прикрепления семядольных листочков до начала разветвления соцветия) , наиболее ценную, она дает длинное волокно — основное льняное сырье(22).

1.3. Ботаническая характеристика льна-долгунца

Семена льна, заделанные в почву, при благоприятных условиях уже на 4-5-й день прорастают. Питание в этот период идет за счет эндоспермы семени. Корешок углубляется в почву, и на поверхность выходят семядольные листочки. Корешки льна начинают усваивать из почвы питательные вещества, а листочки, зеле­нея под влиянием света, поглощают из воздуха углекислый газ, необходимый для образования органического вещества. С этого момента начинается самостоятельный рост и развитие растений льна(28).

Этапы роста растения, которые следуют один за другим, называют фазами. У льна-долгунца принято различать 5 основных фаз роста, которые
характеризуются морфологическими изменениями в онтогенезе или образованием новых органов: всходы, «елочка», бутонизация, цветение, созревание. Продолжительность каждой фенологической фазы, как и всего жизненного цикла льна-долгунца, зависит от сортовых особенностей и условий выращивания. В среднем его вегетационный период составляет 80-90 дней.

От появления семядольных листочков до фазы «елочки» проходит около 15 дней. К этому времени растения достигают высоты 5-10 см и имеют 6 пар близко расположенных друг к другу листочков. Рост льна в фазе «елочки» характеризуется очень медленными темпами, что некоторые исследователи связывают с прохождением растениями двух основных стадий развития - яровизации и световой.

Считают, что стадия яровизации у льна-долгунца длится 5-8 дней и у одних сортов проходит до появления всходов, а у других - после. В этот период растения не чувствительны к интенсивности света и лучше развиваются при низких температурах (+ 5-8сС).

К световой стадии лен обычно переходит в состояние развернутых се­мядольных листочков. Ее продолжительность колеблется в значительном диапазоне и даже у одного сорта в зависимости от температуры может варьировать от 35 до 28 суток.

В это время у растений интенсивно развивается корневая система, вытягивается точка роста и закладываются потенциальные возможности формирования стебля. Чем продолжительнее световая стадия, тем больше образуется междоузлий и тем больше создается предпосылок для последующего интенсивного линейного роста стебля. Пониженная температура воздуха (+ 8-12°С) способствует удлинению световой стадии и приводит к повышению конечной продуктивности растений.

После прохождения световой стадии растения льна вступают в период быстрого роста, который длится до цветения. Среднесуточный прирост стебля в это время может достигать 4 см и более. За 15-22 дня до цветения растение образует до 75% сухих веществ и 60% волокна. В это время происходит реализация потенциальных возможностей роста льна.

Увеличение длительности активного роста, вызывается ли оно пони­женными температурами или является генетической спецификой, приводит к увеличению периода вегетации и повышению урожая волокна.

Во время цветения рост стебля в высоту сильно замедляется и к концу его прекращается. Важным условием прохождения этой фазы и формирования полноценных семя является повышенная температура воздуха и умеренная влажность почвы(19).

Фаза созревания характеризуется быстрым одревеснением стебля и формированием семян. В этой фазе различают зеленую, раннюю желтую, желтую и полную спелость льна. Между фазами резких границ нет, переход происходит постепенно.

Товарные посевы льна-долгунца следует убирать в ранней желтой спелости и уборку заканчивать не позднее начала желтой спелости. Растения в этот период имеют обычно 65—75% коробочек желто-зеленого цвета, остальные коробочки желтые и бурые. Семена в коробочках льна в основном желтые и светло-коричневые. Только отдельные коробочки зеленые с зелеными семенами. Стебли льна становятся светло-желтыми с зеленоватым оттенком и желтыми. Листья в нижней части растений осыпаются, остальные желтеют и лишь самые верхние остаются зелеными.

В фазе ранней желтой спелости волокно в стеблях хорошо сформированное, что обеспечивает его высокий выход и качество. Семена при уборке в это время при правильной и своевременной сушке оказываются жизнеспособными, пригодными для посева и обеспечивают высокий выход масла при переработке.

Убирать лен на волокно рекомендуют не более чем за 10 дней. Не рекомендуется убирать лен в зеленой спелости, так как в этот период солому оценивают по качеству на 0,25-0,5 номера ниже, чем в ранней желтой и желтой спелости. Треста, полученная из стеблей зеленой спелости, дает низкий выход волокна, и оно слабое по прочности на разрыв. Урожай длинного волокна при уборке льна в зеленой спелости на 7-13%, а семян — на 2/з ниже, чем в ранней желтой спелости. Семена имеют низкую жизнеспособность, и их не рекомендуют использовать для посева.

Нельзя оставлять лен неубранным и до полной спелости, так как стебли в этот период буреют, сильно поражаются болезнями, из-за чего их качество снижается на 0,5-1 номер. Волокно льна, убранного в фазе полной спелости, сильно грубеет, выход его снижается. Урожай длинного волокна уменьшается на 12- 13% по сравнению с урожаем при уборке в ранней желтой спелости. При тереблении льна в полной спелости значительная часть семян осыпается от воздействия теребильного аппарата на стебли.

Убирать семеноводческие посевы рекомендуют в фазе желтой спелости, когда на растениях льна 50% желтых и 50% бурых и желто-зеленых коробочек. У первых семена коричневые, у вторых — зеленые с желтым носиком. В этой фазе уборки бывает некоторый недобор волокна и снижение его качества, но обеспечивается больший урожай семян с более высокой, чем при уборке в ранней желтой спелости, массой 1000 шт.

От всходов до созревания растений льна-долгунца проходит 75-90 дней в зависимости от сорта, вносимых удобрений и погодных условий(28). Знание особенностей роста и развития растений льна, потребностей их в тепле, влаге, пище позволяет успешно применять различные приемы агротехники для получения высоких урожаев волокна и семян этой культуры.

Тепло. Семена льна прорастают при температуре 3-5°С. Молодые всходы могут переносить пониженные температуры до —3,5-4°С. Оптимальная температура для роста и развития 15-18°С при пасмурной погоде. При жаркой погоде рост стебля в высоту задерживается. Сумма температур за вегетационный период льна-долгунца должна быть в пределах 1400-2200°С. Резкое колебание температуры днем и ночью отрицательно сказывается на урожае.

Влага. Лен-долгунец — культура, очень требовательная к влаге. Особенно отрицательно сказывается недостаток ее в почве, начиная от посева и до ранней желтой спелости. Это необходимо учитывать при разработке агротехнических мероприятий, которые должны быть направлены на сохранение влаги в почве, обратив внимание и на выравненность полей.

Наиболее высокие урожаи льна и лучшего качества обеспечиваются при влажности почвы от посева до периода быстрого роста в пределах 60%, с начала быстрого роста до цветения — 80, во время созревания — 40-60% полной влагоемкости. В то же время лен не выносит избытка влаги и отрицательно реаги­рует на близкое залегание грунтовых вод. На образование волокна и его анатомическую структуру в большой степени влияет и резкое количественное изменение влаги в почве в период вегетации растений. Избыточное увлажнение посевов (особенно после цветения, когда растения потребляют мало влаги) ведет к полеганию льна и поражению его грибными болезнями.

Свет. На получение высоких урожаев льна-долгунца огром­ное влияние оказывает продолжительность освещения. Это культура длинного дня. Лен развивается лучше, когда в период вегетации больше теплых облачных дней. В таких условиях хорошо идет процесс фотосинтеза, и при полной норме высева растения имеют высокие тонкие стебли, содержащие наиболь­шее количество волокна. Нежелательное ветвление стебля мо­жет быть вызвано сильным солнечным освещением, что в значи­тельной степени снижает урожай и качество льноволокна.

Почва. Наиболее благоприятны для возделывания льна-долгунца структурные и хорошо проницаемые почвы. Среди распространенных в льноводной зоне дерново-подзолистых почв лучшими являются средне и легкие слабооподзоленные суглинки и суглинистые супеси с невысокой степенью оподзоленности. Супеси и пески малопригодны, так как они бедны питательными веществами и плохо удерживают влагу. Лен не дает высоких урожаев и на тяжелых связных глинистых почвах, которые образуют после дождя плотную корку, препятствующую выходу на поверхность нежных проросткам(28).

При возделывании льна также необходимо учитывать своеобразное отношение этой культуры к кислотности почвы. Особенность состоит в том, что лен отрицательно реагирует как на повышенную кислотность, так и на избыток кальция в почве. Более благоприятной для льна является слабокислая реакция почвенного раствора. Оптимальное значе­ние pH(KCL) для льна находится в пределах 5,0-5.5. Известкование снижает подвижность и доступность бора и цинка, поэтому под лен необходимо вносить вместе с минеральными удобрениями по 0.5-1.0 кг га д.в. бора и 2.0-3.0 кг/ га д.в. цинка. В случае посева льна на почве, имеющей рН свыше 6.0 доза бора должна быть не менее 1 к г/га, а цинка 3 кг/ га действующего вещества.

Можно проводить дополнительно некорневую подкормку льна бором и цинком (0,2-0.3 кг/га д.в.) при высоте растении 2-4 см, что повышает устойчи­вость растений льна к кальциевому хлорозу. Внесение извести должно быть удалено по времени с таким расчётом, чтобы лён на одно и то же поле попадал не ранее чем через 4-5 лет(13).

Элементы питания. Важная роль в получении высокого урожая и качества льнопродукции принадлежит питательным элементом. В связи с тем, что корневая система льна развита слабо, он требователен к наличию питательных элементов в почве в легкоусвояемой форме. Основное количество азота растения льна поглощают в фазу быстрого роста - бутонизации. По требовательности к азоту критическим для льна является период от фазы «елочки» до бутонизации. Недостаток азота в этот период сильно снижает урожайность волокна и семян. Избыток азотного питания утолщает стебли льна, вызывая полегание, снижает выход волокна, его качество и урожайность семян. При этом удлиняется период вегетации и усиливается поражение льна болезнями. Поэтому определение доз азотного удобрения под лен важная и сложная задача. Доза азота зависит от предшествующей культуры и ее удобренности, содержания в почве гумуса. Поскольку основными предшественниками льна являются зерновые культуры, то необходимо учитывать и предшественники зерновых. Если зерновые культуры размещались после клевера и хорошо унавоженных пропашных культур, то доза азотного удобрения под лен может быть в пределах N0-5.При размещении зерновых культур по зерновым, доза азотного удобрения под лен увеличивается до N20-40 Существует и различная реакция сортов льна на азотное удобрение. Так, в одинаковых условиях выращивания оптимальная доза азота для сорта Дашковский – N15-20. Для сорта Могилевский - N20-30, для сорта Белинка – N35-45 на оптимальном фоне РК.

Несмотря на то, что максимальное количество фосфора лен потребляет в фазу бутонизации, особенно велика роль фосфорного питания в момент появления всходов и в фазе «елочка». Особенно страдает лен от недостатка фосфора в холодную и влажную весну, когда в почве практически отсутствует воднорастворимый фосфор и этим фактором объясняется высокая эффективность внесения суперфосфата в рядки при посеве льна. С урожаем лен выносит из почвы небольшое количество фосфора. На одну тонну льноволокна с соответствующим количеством семян потребляется 4-5 кг Р2О5.В связи с этим под лен не рекомендуется внесение больших доз фосфорного удобрения. На средне обеспеченной подвижными фосфатами почве внесение фосфорного удобрения в дозе Р30-60 обеспечит урожайность до 15 ц/га волокна с 1 га посева(13).

Лен интенсивно потребляет калий от всходов до цветения. Калий регулирует накопление волокна в стебле, определяет устойчивость к полеганию, повышает устойчивость льна к болезням и увеличивает семенную продуктивность растений. Лен сравнительно много потребляет калия на единицу продукции. На 1 тонну льноволокна с соответствующим количеством семян он выносит из почвы 60-65 кг/га К20. Потребление калия льном возрастает при внесении высоких доз калийного удобрения и высокой обеспеченности почвы обменным калием, но без увеличения урожайности. Поэтому нет необходимости внесения больших доз калия под лен. Доза калийного удобрения К90-120 обеспечит полученное урожайности более 20 ц/га волокна и 8-10 ц/га семян льна(13).

Применение под лен оптимальных доз фосфорного и калийного удобрений позволит на 20% сэкономить денежные средства на приобретение минеральных удобрений, что в денежном выражении составит более 8-10 долларов США на 1 га посева льна.

Из микроэлементов наибольшее значение имеют цинк и бор. На произвесткованных почвах они переходят в малодоступное состояние. Так, углекислый кальций осаждает цинк в виде малоподвижных цинконатов, а бор, кобальт становятся труднодоступными, что вызывает несбалансированность питания и глубокие изменения обмена веществ у растений льна. Вследствие этого лён поражается кальциевым хлорозом. Урожай и качество продукции при этом резко падает. Дефицит микроэлементов в почве можно восполнить путём опудриванием ими семян с прилипателями, а также внекорневой подкормкой в фазе “ёлочки”, совмещая эту операцию с проведением химической прополки посевов. С успехом эту задачу способны разрешить и специализированные севообороты, оптимальная кислотность почв для большинства культур в которых близка к оптимальной кислотности для льна-долгунца(2).

На бедных магнием супесчаных почвах желательно применять магнийсодержащие известковые материалы – доломитовую муку (9).

В Республике Беларусь применяются азотные удобрения (аммиачная се­литра, мочевина, сульфат аммония), фосфорные удобрения (суперфосфат, ам­мофос), калийные (хлористый и сернокислый калий). Для льна можно исполь­зовать все виды и формы этих минеральных удобрений. Калийные и фосфорные удобрения можно вносить осенью и весной. Аммофос и азотные удобрения следует вносить весной. Аммофос следует вносить весной, во избежание потерь азота при осеннем внесении.

В последние годы Институт почвоведения и агрохимии НАН Беларуси со­вместно с ОАО «Гомельский химический завод» разработали новые формы комплексных азотно-фосфорно-калийных удобрений с микроэлементами и ре­гуляторами роста растений, сбалансированные по содержанию и соотношению элементов питания для почв различного уровня плодородия (NPK 5:16:35 и 6:21:32).

Основные преимущества применения комплексных удобрений заключается в том, что все компоненты (макро-, микроэлементы и регуляторы роста растений) включены в одну гранулу и наиболее приемлемым соотношениям элементов питания и вносятся за одни проход техники, что сокращает затраты на их внесение. Наличие в удобрениях микроэлементов снижает отрицательное действие кальция при возделывании льна на почвах с pH около 6,0 и повышает устойчивость растений к кальциевому хлорозу.

Внесение минеральных удобрений под лен должно быть проведено качественно и удобрения равномерно распределены на поверхности почвы, что обеспечит выровненный неполегающий и равномерно созревающий стеблестой. Для внесения удобрений под лен необходимо применять агрегат РШУ-12, СУ-12 и др.(13).

1.4.Влияние почвенных диазотрофов на интенсивносгь ассоциативной азотфиксации под небобовыми культурами и их урожайность

Фиксация атмосферного азота микроорганизмами при тесном контакте с корнями небобовых растений, называемая ассоциативной азотфиксацией, - новое актуальное и перспективное направление в общей проблеме биологического азота. Большая экологическая значимость ассоциативной азотфиксации обусловлена широким распространением небобовых культур и ассоциативных микроорганизмов во всех климатических зонах. На долю ассоциативной азотфиксации, по данным М.М. Умарова, приходится до 70% азота, поступающего за счет биологической азотфиксации в целом. Оптимизируя свойства почвы и внося органические удобрения, продуктивность природной популяции ассоциативных азотфиксаторов можно повысить в 2 – 4 раза(29).

Сама возможность активизации азотфиксации в прикорневой зоне небобовых растений была предсказана ещё в 1926 г. С. П. Костычевым, а экспериментально подтверждалась различными исследователями при использовании балансового метода. В частности, это было показано в длительных(80-140 лет) опытах по возделыванию небобовых растений без применения азотных удобрений (Брэндбокский опыт в Англии, поля Прянишникова в СССР, опыт "вечная рожь" в ФРГ и др.). Бессменное возделывание небобовых культур (озимой ржи, ячменя, ржи, риса и др.) не приводило к заметному снижению содержания азота в почве, несмотря на ежегодное отчуждение его с урожаем, тогда как в вариантах без растений ("вечный пар") происходило непрерывное уменьшение количества гумуса и азота в почве.

К настоящему времени изучение ассоциативной азотфиксации превратилось в самостоятельный раздел учения о биологическом азоте. Показано широкое распространение ассоциативной азотфиксации, выяснены многие физиологические и биохимические особенности этого процесса, активно изучаются микроорганизмы, осуществляющие его в ассоциации с растениями, продолжается поиск активных форм ризосферных диазотрофов и создание на их основе эффективных бактериальных препаратов, приспособленных к возделываемым культурам и почвенно-климатическим условиям.

В настоящее время активными ассоциативными азотфиксаторами считаются более 60 видов бактерий, принадлежащих к 12 семействам. Но наибольшее внимание исследователей привлекают бактерии рода Azospirillum. Это связано с их высокой нитрогеназной активностью в ассоциациях с растениями, хорошей приживаемостью в корневой зоне, конкурентоспособностью при заселении зоны корня(2).

Экологической нишей, в которой протекает ассоциативное связывание атмосферного азота, является фитоплан (ризоплан и филлоплан ) – зона обитания микроорганизмов на поверхности подземных и надземных органов растений, где имеется необходимое энергетическое обеспечение в виде продуктов экзосмоса и корневого опада, существует многими другими метаболитами, а также создаются условия, способствующие активизации нитрогеназы – пониженное парциальное давление О2 , постоянный дефицит легкодоступных соединений азота, повышенная влажность, температура и др. Хотя систематическое изучение экологических особенностей ассоциативной азотфиксации началось сравнительно недавно, но уже до этого было замечено, что добавление в почву глюкозы, сахара, крахмала зелёного удобрения стимулирует азотфиксацию, причём этот эффект проявляется во всех почвах вне зависимости от их свойств. Из этих наблюдений можно сделать вывод – азотфиксирующий генофонд всех почв достаточно богат, а деятельность гетеротрофных азотфиксирующих бактерий в них лимитирована недостатком легкодоступного энергетического субстрата, например, углеводов.

Выполненные к настоящему времени многочисленные работы свидетельствуют о том, что именно фотосинтетическая деятельность растений существенно влияет на динамику и интенсивность азотфиксации в фитоплане и, в конечном счёте, повышает продуктивность её в экосистеме. Однако пока мало данных о масштабах ассоциативной азотфиксации в конкретных фитоценозах, поскольку они могут быть только на основе многократных измерений реальной скорости процесса в природной среде, являющихся пока трудоёмкими и длительными. Значительно больше реперных оценок, полученных при однократных и обычно в периоды активного развития растений. Тем не менее эти данные представляют определённый интерес как для общей характеристики ассоциативной азотфиксации, так и для накопления сведений о возможных величинах её в конкретных экосистемах.

Ассоциативная азотфиксация протекает с той или иной скоростью практически во всех почвах в прикорневом пространстве или на корнях растений самых разных мест обитания. Высокий её уровень (до 200 кг/га) обнаружен в ризосфере большого количества тропических растений (сорго, маис, сахарный тростник, рис и др.). В почвах зоны умеренного климата в ризосфере зерновых культур, корнеплодов, клубнеплодов, многолетних и однолетних трав её уровень достигал лишь 30-55 кг/га. Активность ассоциативной азотфиксации в почве зависит от наличия легкодоступного энергетического материала. Высокий уровень азотфиксации в прикорневой зоне обусловлен притоком сюда больших количеств органических веществ – корневых выделений и корневого опада, объем которых, по последним данным, составляет приблизительно от 25 до 50% продукции фотосинтеза(30).

Процесс азотфиксации подвержен влиянию сложного динамического комплекса различных факторов, вследствие чего азотфиксирующая способность почв может сильно колебаться в течение периода вегетации растений. Поэтому для оценки продуктивности ассоциативной азотфиксации в агроценозах необходимо изучение динамики процесса в течении вегетационного периода непосредственно в полевых условиях.

Результаты исследований М. М. Умарова показали, что активность азотфиксации в посевах злаковых трав (тимофеевка, овсяница луговая) на дерново-подзолистых суглинистых почвах изменялась в течении вегетации и имела два максимума: в начале колошения, а во втором укосе – в фазу цветения злаков. В почве незасеянного участка азотфиксирующая активность была в 1,5 – 2 раза ниже, чем под посевами злаков в течение вегетационного периода изменялась мало. Аналогичные закономерности получены и при изучении динамики активности азотфиксации в дерново-подзолистой супесчаной почве на полях ячменя и картофеля. Под ячменём более высокий уровень азотфиксации также соответствовал фазе начало колошения, под картофелем – фазам бутонизации и цветения. Она была значительно ниже на участках без растений, а также ночью по сравнению с днём(29).

Таким образом, стимулирующее влияние растений на деятельность диазотрофных бактерий наиболее вероятно объясняется поступлением в прикорневую зону легкодоступного энергетического материала из корневых выделений и корневого опада. Известно, то интенсивность корневых выделений возрастает в фазы активного развития растений и при высокой скорости фотосинтеза(32). У злаков в этот период ассимиляционная поверхность растений достигает максимального размера и возрастает продуктивность фотосинтетического аппарата. Имеется ряд данных о тесной зависимости азотфиксации в ризосфере растений от фотосинтетической деятельности. В частности, только этой зависимостью можно объяснить суточную динамику азофиксации в ризосфере(14).

Более высокий уровень процесса азотфиксации в полевых условиях в ризосфере по сравнению с почвой без растений можно объяснить только массированными поступлениями в прикорневую зону легкодоступного энергетического субстратов в виде прижизненных растительных выделений и опада.

Зависимость интенсивности фиксации атмосферного азота ассоциативными азотфисаторами от выделительной деятельности корневых с

Подобные работы:

Актуально: