Использование математических методов и моделей в управлении микроэкономическими системами
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение высшего профессионального образования
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ
(филиал в г. Воскресенске)
Кафедра «Прикладной математики»
КУРСОВАЯ РАБОТА
Дисциплина: «Моделирование микроэкономических процессов и систем»
Тема: « Использование математических методов и моделей в управлении микроэкономическими системами »
Выполнил:
студент 4-го курса (очное отделение)
Петров А.Ю. (шифр1906361)
Специальность: 080116 –
«Математические методы в экономике»
Руководитель: ст. преподаватель Нидеккер И.А.
Воскресенск, 2009 г.
Оглавление
Раздел II. «Использование метода анализа иерархий для организации поставок»
Введение
Темой данной курсовой работы является «Использование математических методов и моделей в управлении микроэкономическими системами».
Курсовая работа имеет следующую структуру:
1. Введение
2. Раздел I «Сетевые модели».
3. Раздел II «Использование метода анализа иерархий для организации поставок».
4. Заключение
5. Список использованной литературы
Целью курсовой работы является изучение на практике современных методов управления и организации производства, совершенствование применения этих методов.
В первом разделе курсовой работы рассматривается ориентированная сеть, рассчитываются необходимые показатели этой сети для принятия в дальнейшем управленческих решений. На примерах описываются возможные применения данных методов.
Во втором разделе рассматривается проблема выбора поставщика. Оценивается по критериям каждый из них, и в результате расчетов принимается решение о продолжении сотрудничества с одним из поставщиков.
Раздел I. «Сетевые модели»
1. Построение сети.
Данная ориентированная сеть состоит из 7 вершин, соединенных 8 ребрами. Источник – вершина 1, сток – вершина 7. Веса ребер указаны на сети, а также в таблице 1.
Таблица 1
Ребро (i, j) | Вес ребра (i, j) |
(1, 2) | 5 |
(1, 4) | 11 |
(2, 3) | 4 |
(3, 4) | 2 |
(4, 5) | 3 |
(4, 7) | 15 |
(5, 6) | 8 |
(6, 7) | 3 |
2. Построение минимального остовного дерева.
Минимальное остовное дерево - это остовное дерево графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер.
Шаг 0: C0 = Ø, = {1, 2, 3, 4, 5, 6, 7}
Шаг 1: C1 = {1}, = {2, 3, 4, 5, 6, 7}
|