Аппроксимация характеристик нелинейных элементов и анализ цепей при гармонических воздействиях
Академия России
Кафедра Физики
Реферат на тему:
«АППРОКСИМАЦИЯ ХАРАКТЕРИСТИК НЕЛИНЕЙНЫХ ЭЛЕМЕНТОВ И АНАЛИЗ ЦЕПЕЙ ПРИ ГАРМОНИЧЕСКИХ ВОЗДЕЙСТВИЯХ»
Орел 2006
Учебные вопросы
1. Аппроксимация характеристик нелинейных элементов
2. Графо-аналитический и аналитический методы анализа
3. Анализ цепей методом угла отсечки
4. Воздействие двух гармонических колебаний на безынерционный
нелинейный элемент
Литература
Вступление
Для всех рассмотренных ранее линейных цепей справедлив принцип суперпозиции, из которого вытекает простое и важное следствие: гармонический сигнал, проходя через линейную стационарную систему, остается неизменным по форме, приобретая лишь другие амплитуду и начальную фазу. Именно поэтому линейная стационарная цепь не способна обогатить спектральный состав входного колебания.
Особенностью НЭ, по сравнению с линейными, является зависимость параметров НЭ от величины приложенного напряжения или силы протекающего тока. Поэтому на практике при анализе сложных нелинейных цепей пользуются различными приближенными методами (например, заменяют нелинейную цепь линейной в области малых изменений входного сигнала и используют линейные методы анализа) или ограничиваются качественными выводами.
Важным свойством нелинейных электрических цепей является возможность обогащения спектра выходного сигнала. Эта важная особенность используется при построении модуляторов, преобразователей частоты, детекторов и т. д.
Решение многих задач, связанных с анализом и синтезом радиотехнических устройств и цепей, требует знания процессов, происходящих при одновременном воздействии на нелинейный элемент двух гармонических сигналов. Это связано с необходимостью перемножения двух сигналов при реализации таких устройств, как преобразователи частоты, модуляторы, демодуляторы и т. д. Естественно, что спектральный состав выходного тока НЭ при бигармоническом воздействии будет гораздо богаче, чем при моногармоническом.
Нередко возникает ситуация, когда один из двух воздействующих на НЭ сигналов мал по амплитуде. Анализ в этом случае значительно упрощается. Можно считать, что по отношению к малому сигналу НЭ является линейным, но с переменным параметром (в данном случае крутизной ВАХ). Такой режим работы НЭ называется параметрическим.
1. Аппроксимация характеристик нелинейных элементов
При анализе нелинейных цепей (НЦ) обычно не рассматривают процессы, происходящие внутри элементов, составляющих эту цепь, а ограничиваются лишь внешними их характеристиками. Обычно это зависимость выходного тока от приложенного входного напряжения
, (1)
которую принято называть вольт-амперной характеристикой (ВАХ).
Самое простое – использовать имеющуюся табличную форму ВАХ для численных расчетов. Если же анализ цепи должен проводиться аналитическими методами, то возникает задача подбора такого математического выражения, которое отражало бы все важнейшие особенности экспериментально снятой характеристики.
Это не что иное, как задача аппроксимации. При этом выбор аппроксимирующего выражения определяется как характером нелинейности, так и используемыми расчетными методами.
Реальные характеристики имеют достаточно сложный вид. Это затрудняет их точное математическое описание. Кроме того, табличная форма представления ВАХ делает характеристики дискретными. В промежутках между этими точками значения ВАХ неизвестны. Прежде чем переходить к аппроксимации, необходимо как-то определиться с неизвестными значениями ВАХ, сделать ее непрерывной. Тут возникает задача интерполяции (от лат. inter – между, polio – приглаживаю) – это отыскание промежуточных значений функции по некоторым известным ее значениям. Например, отыскание значений в точках лежащих между точками по известным значениям . Если , то аналогичная процедура носит задачи экстраполяции.
Обычно аппроксимируют лишь ту часть характеристики, которая является рабочей областью, т. е. в пределах изменения амплитуды входного сигнала.
При аппроксимации вольт-амперных характеристик необходимо решить две задачи: выбрать определенную аппроксимирующую функцию и определить соответствующие коэффициенты. Функция должна быть простой и в то же время достаточно точно передавать аппроксимируемую характеристику. Определение коэффициентов аппроксимирующих функций осуществляется методами интерполяции, среднеквадратичного или равномерного приближения, которые рассматриваются в математике.
Математически постановка задачи интерполяции может быть сформулирована следующим образом.
Найти многочлен степени не больше такой, что i = 0, 1, …, , если известны значения исходной функции в фиксированных точках , i = 0, 1, …, . Доказывается, что всегда существует только один интерполяционный многочлен, который может быть представлен в различных формах, например в форме Лагранжа или Ньютона. (Рассмотреть самостоятельно на самоподготовке по рекомендованной литературе).
Аппроксимация степенными полиномами и кусочно-линейная
Она основана на использовании хорошо известных из курса высшей математики рядов Тейлора и Маклорена и заключается в разложении нелинейной ВАХ в бесконечномерный ряд, сходящийся в некоторой окрестности рабочей точки . Поскольку такой ряд физически не реализуем, приходится ограничивать число членов ряда, исходя из требуемой точности. Степенная аппроксимация применяется при относительно малом изменении амплитуды воздействия относительно .
Рассмотрим типичную форму ВАХ любого НЭ (рис. 1).
Напряжение определяет положение рабочей точки и, следовательно, статический режим работы НЭ.
Рис. 1. Пример типичной ВАХ НЭ
Обычно аппроксимируется не вся характеристика НЭ, а лишь рабочая область, размер которой определяется амплитудой входного сигнала, а положение на характеристике – величиной постоянного смещения . Аппроксимирующий полином записывается в виде
, (2)
где коэффициенты определяются выражениями
.
Аппроксимация степенным полиномом заключается в нахождении коэффициентов ряда . При заданной форме ВАХ эти коэффициенты существенно зависят от выбора рабочей точки , а также от ширины используемого участка характеристики. В этой связи целесообразно рассмотреть некоторые наиболее типичные и важные для практики случаи.
1. Рабочая точка расположена на середине линейного участка (рис. 2).
Рис. 2. Рабочая точка ВАХ – на середине линейного участка
Участок на характеристике, где закон изменения тока близок к линейному, относительно неширок, поэтому амплитуда входного напряжения не должна выходить за пределы этого участка. В этом случае можно записать:
, (3)
где – ток покоя;
;
– дифференциальная крутизна характеристики.
Этот случай применим только при слабом сигнале , поскольку в этом случае можно без большой погрешности пренебречь нелинейностью ВАХ.
2. Рабочая точка расположена на начальном участке характеристики.
Рис. 3. Рабочая точка ВАХ – на начальном участке характеристики
При небольшом изменении амплитуды входного сигнала относительно можно с малой погрешностью аппроксимировать ВАХ квадратичной параболой (степенным полиномом второго порядка). Аппроксимирующее выражение будет иметь вид
(4)
Как и в выражении (6.6), – ток покоя (постоянная составляющая выходного тока); – крутизна характеристики в точке . Для определения значений и необходимо составить систему уравнений:
(5)
Отсюда можно записать:
3. Рабочая точка является точкой перегиба характеристики (рис. 4).
Рис. 4. Рабочая точка ВАХ – точка перегиба
В точке перегиба все четные производные функции обращаются в нуль, поэтому в выражении (3) будут присутствовать только слагаемые с нечетными степенями , k = 1, 2, 3, … .
Напомним, что точка перегиба – точка кривой, в которой:
1) вогнутость (выпуклость) кривой меняется на выпуклость (вогнутость);
2) кривая "лежит" по разные стороны от касательной в этой точке.
В общем случае аппроксимирующий полином может быть любого, сколь угодно высокого порядка. Однако в большинстве практических случаев достаточную для инженерной практики точность дает полином третьей степени:
(6)
На рисунке 4 график, соответствующий (6), показан пунктирной линией. Рабочий участок ВАХ (динамический диапазон) определяется интервалом . На границах этого интервала производные аппроксимирующей функции обращаются в нуль. Для нахождения коэффициентов и необходимо, как и в предыдущем случае, составить систему уравнений и решить ее относительно и :
(7)
Откуда
При очень больших амплитудах входного сигнала часто бывает удобнее заменять реальную характеристику идеализированной, составленной из отрезков прямых линий. Такое представление ВАХ называется кусочно-линейной аппроксимацией. На рисунке 5 показаны некоторые характерные примеры.
а б в
Рис. 5. Кусочно-линейная аппроксимация ВАХ
2. Графоаналитический и аналитический методы анализа
Графоаналитический метод анализа
Этот метод используется в тех случаях, когда отсутствует отсечка тока. Этот метод известен под названием трех (пяти, семи) ординат. Суть его заключается в следующем (рис. 6): пусть на НЭ воздействует напряжение
. (8)
Рис. 6. Иллюстрация графоаналитического метода анализа
Ток через НЭ будет представлять собой периодическое колебание сложной формы. Аналитически его можно записать в виде ряда Фурье
(9)
В реальных исследованиях приходится ограничивать число членов ряда, а для определения амплитуд используются вышеназванные методы. Практически наиболее часто применяются методы трех и пяти ординат.
Суть метода заключается в следующем: ВАХ нелинейного элемента делится на три (пять) участка, точки 1, 3, 5 или 1, 2, 3, 4, 5 (рис. 6.6), при этом фиксируются значения входного и выходного сигналов ( и ). Затем составляется система из трех (пяти) уравнений для токов и решается относительно неизвестных и т. д. Из графика на рисунке 6 видно, что в точках 1–5 будут следующие значения амплитуд и фаз входного и выходного сигналов (табл. 1).
Таблица 1
№ точек | Мгновенная фаза входного сигнала, | Амплитуда входного сигнала, u(t) | Амплитуда выходного тока |
1 | 0 | ||
2 | |||
3 | |||
4 | |||
5 |
Подобные работы: