11-этажный жилой дом с мансардой

Наряду с развитием производства строительных конструкций и изделий полной заводской готовности, широкое распространение получило возведение зданий и сооружений из монолитного железобетона.

Практика подтвердила технико-экономические преимущества строительства жилых и общественных зданий, отдельных элементов и конструкций в монолитном и сборно-монолитном исполнении. Монолитное строительство позволяет реализовать его ресурсосберегающие возможности для повышения качества и долговечности жилья, выразительности архитектуры отдельных зданий и градостроительных комплексов. Технико-экономический анализ показывает, что в целом ряде случаев монолитный железобетон оказывается более эффективен по расходу материалов, суммарной трудоёмкости и приведённым затратам.

Его преимущество может быть реализовано в первую очередь в районах со сложными геологическими условиями, при повышенной сейсмичности, в местах, где отсутствуют или недостаточны мощности полносборного домостроения.

Массовое монолитное домостроение переходит от кустарной технологии и мизерных объёмов к современным методам возведения и поточному строительству. В условиях рыночных отношений, при дефиците жилья и социально культурных объектов в России, у этого эффективного метода домостроения, несомненно, большие перспективы.


1 Исходные данные

Дипломный проект на тему «11-этажный жилой дом с мансардой» разработан на основании задания на проектирование.

Климатический район строительства – III, при проектировании учтены следующие характеристики района:

Температура наружного воздуха:

а) наиболее холодных суток -23ºС

б) наиболее холодной пятидневки -19ºС

Годовое количество осадков, мм 711

Среднемесячная относительная влажность воздуха, в %:

в январе 79

в июле 46

Район по скоростному напору ветра IV

Район по весу снегового покрова I

Инженерно-геологические изыскания на площадке строительства выполнены ООО «Изыскатель» в 2006 г.

Сейсмичность участка по СНиП II –7 –81 - 7 баллов, категория грунтов по сопротивляемости сейсмическим воздействиям – II, расчётная сейсмичность проектируемого здания принята 7 баллов.


2 Генеральный план участка

Жилой дом строится на участке малой плотности застройки.

Участок под строительство 11-этажного жилого дома располагается в Центральном районе, по ул. Дмитриевская дамба.

Расположение строящегося здания определялось границами отведенного участка, наличием примыкающих жилых домов и необходимостью приблокировки к ним.

Здание строящегося жилого дома располагается внутри квартала. - Подъезд к жилому дому предусмотрен со стороны ул. Дмитриевская дамба. Противопожарный проезд, обеспечивающий эвакуацию жильцов из каждой квартиры, выполнен на расстоянии 8 м от стен здания, в соответствии с нормативными требованиями.

Все квартиры имеют нормативную инсоляцию.

Площадки для отдыха взрослых и детей используются существующие на прилегающих дворовых территориях приблокируемых домов.

Вертикальная планировка обеспечивает отвод дождевых стоков по лоткам проезжей части дорог в существующие дождеприемники.

Рельеф участка спокойный, подрезка и подсыпка грунта с образованием откосов отсутствует.

Технико-экономические показатели по генплану:

площадь застройки – 556 м2;

строительный объём – 24862 м3.


3 Технико-экономическое сравнение вариантов конструкций и выбор основного варианта

Целью этого раздела является выбор экономически наиболее целесообразного варианта конструктивного решения здания. Подбор вариантов конструктивных решений здания необходимо выполнять в соответствии с объемно-планировочным решением, вытекающим из функционального назначения здания.

3.1 Исходные данные

Кирпично-монолитный жилой 11-ти этажный дом с размерами в плане 27х20,6 м, 1-секционный.

Наружные стены здания могут быть выполнены в трех вариантах, которые по заданию нужно сопоставить по стоимости, расходу материалов и трудоемкости.

I. Стены из лицевого керамического кирпича и пенобетонных блоков с эффективным утеплителем типа «Rockwool» («Венти Баттс»).

II. Лицевой керамический кирпич с утеплителем из минераловатных плит и кладкой из кирпича.

III. Стена из пенобетонных блоков.

3.2. Технико-экономическая оценка вариантов конструктивных решений по методике приведенных затрат

Для принятия решения о наиболее эффективном варианте конструкций наружных стен необходимо в рамках методики приведенных затрат определить суммарный экономический эффект по формуле (3.1):

Э общ = Э пз + Э э + Э т ; ( 3.1)

где:

Эпз - экономический эффект, возникающий за счет разности приведенных затрат сравниваемых вариантов конструктивных решений;

Ээ - экономический эффект, возникающий в сфере эксплуатации здания за период службы выбираемых конструктивных элементов;

Эт - экономический эффект, возникающий в результате сокращения продолжительности строительства здания.

Определим составляющие суммарного экономического эффекта.

3.2.1 Определение экономического эффекта, возникающего за счет разности приведенных затрат сравниваемых вариантов конструктивных решений

Экономический эффект, возникающий за счет разности приведенных затрат сравниваемых вариантов конструктивных решений, определяется по формуле:

Э пз = Зб * Кр – З i; (3.2)

где:

Зi, Зб - приведенные варианты по базисному и сравниваемым вариантам конструктивных решений;

За базисный вариант в расчетах принимается вариант, имеющий наибольшую продолжительность (трудоемкость) строительства, т.е. вариант кирпичной стены с утеплителем (второй).

Кр - приведенный коэффициент реновации, который учитывает разновременность затрат по рассматриваемым вариантам, поскольку период эксплуатации конструктивных решений может быть различным; он определяется по формуле (3.3)

Кр =(Рб + Ен) / (Рi + Ен ); (3.3)

где:

Ен - норматив сравнительной экономической эффективности капитальных вложений, который принимаем равным 0,22;

Рб, Рi- коэффициенты реновации по вариантам конструктивных решений, которые учитывают долю сметной стоимости строительных конструкций в расчете на 1 год их службы.

Кр = 1 и в нашем случае Э пз = З б – З i; (3.4)

Причем, приведенные затраты по вариантам определяются так

З i = Ссi + Е н* (З м i + Ссi) / 2 (3.5)

Где:

Сс i- сметная стоимость строительных конструкций по варианту конструктивного решения;

З м i- стоимость производственных запасов материалов, изделий и конструкций, находящихся на складе стройплощадки и соответствующая нормативу; определяется по формуле

m

З мi= ∑ Мj * Цj * Н зом j ; (3.6)

J=1

где:

Мj- однодневный запас основных материалов, изделий и конструкций, в натур. Единицах;

Цj- сметная цена франко – приобъектный склад основных материалов, изделий и конструкций;

Н зом j- норма запаса основных материалов, изделий и конструкций, дн., принимается равной 5 – 10 дней;

Используем данные о стоимости материалов для расчета величины (З м i). Величина стоимости однодневного запаса материалов по вариантам конструктивных решений может определиться так

∑ Мj * Цj = М i / t днi ;

где:

М i- сметная стоимость материалов по данным локальных расчетов i – го варианта;

t дн i- продолжительность выполнения варианта конструктивных решений i – го варианта, в днях, определяемая по формуле (3.7)

tднi = mi / (n *r*s); (3.7)

где:

mi- трудоемкость возведения конструкций варианта, чел-дн; принимается по данным сметного расчета;

n - количество бригад, принимающих участие в возведении конструкций вариантов;

r - количество рабочих в бригаде, чел.;

s - принятая сменность работы бригады в сутки.

3.2.2 Определение экономического эффекта, возникающего в сфере эксплуатации здания за период службы выбираемых конструктивных элементов

Эксплуатационные затраты, учитываемые в расчете, зависят от конкретных условий работы конструкций; к ним относятся: затраты на отопление, вентиляцию, освещение, амортизацию и содержание конструкций.

Затраты на отопление, вентиляцию, освещение и прочие при сравнении конструкций фундаментов можно принять одинаковыми и в расчетах не учитывать.

Затраты на содержание строительных конструкций складываются из следующих видов которые нормируются в виде амортизационных отчислений от их первоначальной стоимости в составе строительной формы здания: затрат, связанных с восстановлением конструкции; затрат на капитальный ремонт конструкций; затрат на содержание конструкций, связанных с текущими ремонтами, окраской, восстановлением защитного слоя покрытий и т. п.

Размер этих затрат определяется по формуле

С экс = (a1 + a 2 + a 3) / С с *100; (3.8)

где:

a1 - норматив амортизационных отчислений на реновацию, %;

a 2 - норматив амортизационных отчислений на капитальный ремонт, %;

a 3 - норматив амортизационных отчислений на текущий ремонт и содержание конструкций, %;

Тогда экономический эффект инвестора, возникающий в сфере эксплуатации зданий, определится по формуле

Э э = С бэкс /(Рб + Ен) - С iэкс / (Рi+ Ен ) + ∆ К ; (3.9)

где:

∆ К – разница приведенных сопутствующих капитальных вложений, связанных с эксплуатацией конструкций по вариантам; под ними понимаются затраты, предназначенные для приобретения устройств, которые используются в процессе эксплуатации конструкций; при их отсутствии сопутствующие капитальные вложения не учитываются.

Для условий нашей задачи (отсутствие сопутствующих капитальных вложений, одинаковый срок эксплуатации конструкций разных вариантов) формула (3.9) принимает вид

Э э = С бэкс - С iэкс ; (3.10)

формулу (3.8) можно представить в виде

Э э = ( (a1 + a 2 + a 3) * ( 1/ С бэкс - 1 / С iэкс )) /100 ; (3.11)

3.2.3 Определение экономического эффекта, возникающего в результате сокращения продолжительности строительства здания

Экономический эффект для жилого дома определяется по формуле

Э т = 0,5 *Ен * ( Кб * Тб - Кi* Тi ); (3.12)

где:

Ксб , Ксi– средний размер капитальных вложений, отвлеченных инвестором за период строительства, по базовому и сравниваемому вариантам.

Величина капитальных вложений по сравниваемым вариантам определяется, исходя из того, что в здании меняются только конструкции по вариантам, по формуле

К i= К б – (Ccб - С с i) ; (3.13)

где:

Ccб , Ссi- сметная стоимость базисного и сравниваемого вариантов конструктивного решения здания; принимается по данным сметных расчетов.

Тб , Тi- продолжительность строительства по базовому и сравниваемому вариантам, год.

Продолжительность строительства по базисному варианту принимаем на основании СНиП «Нормы задела и продолжительности строительства».

Здание имеет общую площадь 6674,4 м2.

Для сравниваемых вариантов конструктивных решений продолжительность возведения здания определяется по формуле

Тi= Тб - (t б - t i) ; (3.14)

где:

t б , t i- продолжительность осуществления конструктивного решения для варианта с наибольшей продолжительностью и для сравниваемых вариантов, год;

Продолжительность возведения конструкций (в годах) определяется по формуле:

t i = (mi/ (n *r*s) / 260; (3.15)

3.3 Теплотехнический расчет вариантов конструктивных решений

1 вариант – пенобетонный блок, эффективный утеплитель, кирпич

теплотехн%20расчет-2%20вар

1) Цементно-песчаный раствор


λ = 0,76 Вт/мС; ρ = 1600 кг/м3

2) Кирпичная кладка из кирпича

глиняного обыкновенного на

цементно-песчаном растворе

λ = 0,70 Вт/мС; ρ=1800 кг/м3

3) Эффективный утеплитель –

минераловатные фасадные плиты

«Rockwool» («Венти Баттс»)

Рисунок 3.1. Разрез по стене λ = 0,06 Вт/мС; ρ=125 кг/м3

1 варианта 4) Пенобетонный блок

λ = 0,41 Вт/мС; ρ = 1000 кг/м3

R0 = Rв + Rштук + Rкирп + Rутепл + Rблок + Rштук + Rн R

R =

R= (tвн - t)Z = (20-2)149 = 2682 (дней)

2000 – 2,1

4000 – 2,8

отсюда δут = 0,09 м.

2 вариант – кирпичная стена с утеплителем


теплотехн%20расчет-2%20вар

Рисунок 3.2. Разрез по стене

1) Цементно-песчаный раствор

λ = 0,76 Вт/мС; ρ = 1600 кг/м3

2) Кирпичная кладка из кирпича

глиняного обыкновенного на

цементно-песчаном растворе

λ = 0,70 Вт/мС; ρ=1800 кг/м3

3) Минераловатные плиты

λ = 0,076 Вт/мС; ρ=200 кг/м3

2 варианта

R0 = Rв + Rштук + Rкирп + Rут + Rкирп + Rшт + Rн R

R = 2,34 (см. вар-1)

отсюда δут = 0,10 м.


3 вариант – стена из мелкоштучных элементов – пеноблоков

b

Рисунок 3.3. Разрез по стене

1) Цементно-песчаный раствор

λ = 0,76 Вт/мС; ρ = 1600 кг/м3

2) Пенобетонный блок

λ = 0,22 Вт/мС; ρ=600 кг/м3

3 варианта

R0 = Rв + Rштук + Rблок + Rштук + Rн R

R = 2,34 (см. вар-1)

отсюда δблок = 0,47 м. Вынуждены будем принять толщину из 3-х блоков 20х3=60 см.

Из трех вариантов выбираем первый – как имеющий наименьшую толщину стены, удовлетворяющий современным требованиям теплозащиты.


4 Архитектурно-строительная часть

4.1 Объемно-планировочные решения

Жилой дом представляет собой 11-ти этажный объем с габаритными размерами 27 х 20,6 м, высотой 41,7 м. Главный фасад ориентирован на сторону улицы Дмитриевская дамба, на него выходят лоджии и балконы. Входы оформлены козырьками и цветочницами. Лестницы на входе в здание выложены керамическим гранитом со специальным не скользящем покрытием. Проект здания имеет индивидуальное архитектурное и объёмно-планировочное решение. Планировка помещений здания выполнена свободной, с учётом современных эстетических требований.

Подвал расположен под всем зданием и имеет высоту 2,8 м в нём запроектированы необходимые технические помещения, а также осуществлены необходимые вводы и разводка инженерных коммуникаций. Конструкция стен обеспечивает требуемое приведённое сопротивление теплопередаче.

Крыша здания – скатная, сложной конфигурации, с кровлей из металлочерепицы. Сброс наружных атмосферных осадков – через водосточные трубы.

Вертикальная связь между этажами осуществляется по центральной лестничной клетке и наружным противопожарным лестницам. Выход на чердак осуществляется с лестничной клетки, через специальный люк, на кровлю через окна типа «Velux».

4.2 Конструктивное решение здания

Конструктивная схема здания жилого дома решена в рамно-связевом монолитном железобетонном каркасе (колонны, диафрагмы, ядро жесткости) с монолитными железобетонными безригельными перекрытиями и покрытием. Сечения колонн 300×700 и 250×500 мм. Пролет плиты перекрытия непостоянен на разных участках, но не превышает 5,5 м. Стены цокольного этажа – монолитные, толщиной 200 мм; толщина диафрагм составляет также 200 мм. Плиты перекрытий толщиной 200 мм. Все конструкции выполнены из монолитного железобетона класса В20. Ростверк из монолитного железобетона класса В20.

Наружные стены здания ненесущие с поэтажным опиранием на перекрытия. Выполнены многослойными. Стены армируются сетками и крепятся к каркасу при помощи монтажных элементов.

Лестничные марши и лестничные площадки – монолитные, железобетонные.

Покрытие – скатная кровля с внутренним водосбором.

4.3 Теплотехнический расчёт ограждающих конструкций

Общая информация о проекте

1. Назначение – жилое здание.

2. Размещение в застройке – в составе комплекса, односекционное.

3. Тип – 11-этажный жилой дом на 84 квартиры центрального теплоснабжения.

4. Конструктивное решение – кирпично-монолитное.

Расчетные условия

5. Расчетная температура внутреннего воздуха – (+20 0C).

6. Расчетная температура наружного воздуха – (– 19 0C).

7. Расчетная температура теплого чердака – (+14 0С).

8. Расчетная температура теплого подвала – (+2 0С).

9. Продолжительность отопительного периода – 149 сут.

10. Средняя температура наружного воздуха за отопительный период для г.Краснодара – (+2 0C).

11. Градусосутки отопительного периода – (2682 0C.сут).

Объемно-планировочные параметры здания

12. Общая площадь наружных ограждающих конструкций здания площадь стен, включающих окна, балконные и входные двери в здание:

Aw+F+ed=Pst.Hh ,

где Pst – длина периметра внутренней поверхности наружных стен этажа,

Hh – высота отапливаемого объема здания.

Aw+F+ed=(27+20,6)х2х44,7 = 4255,44 м2;

Площадь наружных стен Aw, м2, определяется по формуле:

Aw= Aw+F+ed – AF1 – AF2 – Aed,

где AF – площадь окон определяется как сумма площадей всей оконных проемов.

Для рассматриваемого здания:

- площадь остекленных поверхностей

AF1= 2,05х1,44х(10х4х4+10х3х2 + +16х4х2)+2,5х1,8х64+10х1,6х2х14+8,5х1,6х4х10+2,5х1,6х10х2 = 1387,3 м2;

- площадь глухой части балконной двери

AF2 = 0,8х0,8х(14х4+6х10) = 74,24 м2;

- площадь входных дверей


Aed= 1,5х2,5х6х3=67,5 м2.

Площадь глухой части стен:

AW= 4255,44-1387,3-74,24-67,5 = 2483,24 м2.

Площадь покрытия и перекрытия над подвалом равны:

Ac=Af=Ast=(29,1х2+30,1)х15,8 = 1395,14 м2.

Общая площадь наружных ограждающих конструкций:

Aesum=Aw+F+ed+Ac+Ar = 4255,44+1395,14×2 = 7802,56 м2.

13 – 15. Площадь отапливаемых помещений (общая площадь и жилая площадь) определяются по проекту:

Ah= 27*20,6*11 = 6674,4 м2; Ar= 2467,6 м2.

16. Отапливаемый объем здания, м3, вычисляется как произведение площади этажа на высоту (расстояние от пола первого этажа до потолка последнего этажа):

Vh=Ast.Hh=27х20,6х44,7 = 24862,14 м2;

17. Коэффициент остекленности фасадов здания:

P=AF1/Aw+F+ed= 1387,3/4255,44=0,476;

18. Показатель компактности здания:

Kedes=Aesum/Vh=7802,56/24862,14 = 0,144.

Теплотехнические показатели

19. Согласно СНиП II-3-79* приведенное сопротивление теплопередаче наружных ограждений должно приниматься не ниже требуемых значений R0req, которые устанавливаются по таблице 1«б» СНиП II-3-79* в зависимости от градусосуток отопительного периода. Для Dd=26820С.сут требуемые сопротивления теплопередаче равно для:

- стен Rwreq=2.34 м2.0С/Вт

- окон и балконных дверей Rfreq=0.367 м2.0С/Вт

- глухой части балконных дверей RF1req=0.81 м2.0С/Вт

- входных дверей Redreq=1.2 м2.0С/Вт

- покрытие Rcreq=3.54 м2.0С/Вт

- перекрытия первого этажа Rf=3.11 м2.0С/Вт

По принятым сопротивлениям теплопередаче определим удельный расход тепловой энергии на отопление здания qdes и сравним его с требуемым удельным расходом тепловой энергии qhreq, определенным по таблице 3.7 СНКК-23-302-2000. Если удельный расход тепловой энергии на отопление здания окажется меньше 5% от требуемого, то по принятым сопротивлениям теплопередаче определимся с конструкциями ограждений, характеристиками материалов и толщиной утеплителя.

20. Приведенный трансмиссионный коэффициент теплопередачи здания определяется по формуле:

Kmtr=b(Aw/Rwr+AF1/RF1+ AF2/RF2+Aed/Red+n.Aс/Rсr+n.Af.Rfr)/Aesum ,

Kmtr=1.13(2483,24/2,34+1387,3/0,367+74,24/0,81+67,5/1,2+0,6×1395,14/3,54+0,6×1395,14/3,11)/7802,56 = 1,19 (Вт/(м2.0С)).

21. Воздухопроницаемость стен, покрытия, перекрытия первого этажа Gmw=Gmc=Gmf=0.5кг/(м2.ч), окон в деревянных переплетах и балконных дверей GmF=6кг/(м2.ч). (Таблица 12 СНиП II-3-79*).

22. Требуемая краткость воздухообмена жилого дома na, 1/ч, согласно СНиП 2.08.01, устанавливается из расчета 3 м3/ч удаляемого воздуха на 1м2 жилых помещений, определяется по формуле:

na=3.Ar/(bv.Vh)=3.2467,6/(0.85.24862,14) = 0,355 (1/ч),

где Ar – жилая площадь, м2;

bv – коэффициент, учитывающий долю внутренних ограждающих конструкций в отапливаемом объеме здания, принимаемый равным 0.85;

Vh – отапливаемый объем здания, м3.

23. Приведенный инфильтрационный (условный) коэффициент теплопередачи здания определяется по формуле:

Kminf=0.28.c.na.bV.Vh.gaht.k/Aesum,

Kminf=0,28×0,355×0,85×24862,14×1,283×0,8/7802,56 = 0,604 (Вт/(м2.0С)).

Где с – удельная теплоемкость воздуха, равная 1кДж/(кг.0С),

na – средняя кратность воздухообмена здания за отопительный период (для жилых зданий 3м3/ч, для других зданий согласно СНиП 2.08.01 и СНиП 2.08.02);

bV – Коэффициент снижения объема воздуха в здании, учитывающий наличие внутренних ограждающих конструкций, при отсутствии данных принимать равным 0.85;

Vh – отапливаемый объем здания;

gaht – средняя плотность наружного воздуха за отопительный период, равный 353/(273+2)=1,283

k – Коэффициент учета влияния встречного теплового потока в конструкциях, равный 0,7 – для стыков панельных стен, 0,8 – для окон и балконных дверей;

Aesum – общая площадь наружных ограждающих конструкций, включая покрытие и перекрытие пола первого этажа;

24. Общий коэффициент теплопередачи, Вт/(м2.0С), определяемый по формуле:

Km=Kmtr+Kminf=1,19+0,604=1,79 (Вт/(м2.0С)).

Теплоэнергетические показатели

25. Общие теплопотери через ограждающую оболочку здания за отопительный период Qh, МДж, определяют по формуле:

Qh=0.0864.Km.Dd.Aesum ,

Qh=0,0864. 1,79×2682×7802,56=3244071,51 (МДж).

26. Удельные бытовые тепловыделения qint, Вт/м2, следует устанавливать исходя из расчетного удельного электро- и газопотребления здания, но не менее 10 Вт/м2. Принимаем 10 Вт/м2.

27. Бытовые теплопоступления в здание за отопительный период, МДж:

Qint=0,0864.qint.Zht.Al=0.0864.10.149. 10316,6 = 10445,34 (МДж).

28. Теплопоступления в здание от солнечной радиации за отопительный период определяется по формуле (3.14).

Определим теплопоступления:

Qs=tF.kF.(AF1I1+ AF2I2+ AF3I3+AF4I4)=

=0.65.0.9(1193,65х974+1193,65х357)=929417,67 (МДж).


29. Потребность в тепловой энергии на отопление здания за отопительный период, МДж, определяют по формуле (3.6а) при автоматическом регулировании теплопередачи нагревательных приборов в системе отопления:

Qhy=(Qh– (Qint+Qs).У).bh ,

Qhy=(3244071,51–(10445,34+929417,67).0.8).1.11=2766321,03 (МДж).

30. Удельный расход тепловой энергии на отопление здания qhdes, кДж/(м2.0С.сут) определяется по формуле (3.5):

qhdes=103.Qhy/Ah.Dd ,

qhdes=2766321,03×103/(6674,4.2682)=59,32 (кДж/(м2.0С.сут)).

31. Расчетный коэффициент энергетической эффективности системы отопления и централизованного теплоснабжения здания от источника теплоты принимаем h0des=0.5, так как здание подключено к существующей системе централизованного теплоснабжения.

32. Требуемый удельный расход тепловой энергии системой теплоснабжения на отопление здания принимается по таблице 3.7 – для здания более 10 этажей равен 70 кДж/(м2.0С.сут). Следовательно, полученный нами результат значительно (более 5%) меньше требуемого 59,32<70, поэтому мы имеем возможность уменьшать приведенные сопротивления теплопередачи ограждающих конструкций, определенные по таблице 1«б» СНиП II-3-79*, исходя из условий энергосбережения. (Изменения вносим в пункт 19).

19. Для второго этапа расчета примем следующие сопротивления теплопередачи ограждающих конструкций:

- стен Rwreq=1,91 м2.0С/Вт

- окон и балконных дверей Rfreq=0.367 м2.0С/Вт – (Без изменения)

- глухой части балконных дверей RF1req=0.81 м2.0С/Вт – (Без измен.)

- наружных входных дверей Redreq=0.688 м2.0С/Вт – т.е. 0.6 от R0тр по санитарно-гигиеническим условиям;

- совмещенное покрытие Rcreq=1,63м2.0С/Вт

- перекрытия первого этажа Rf=2 м2.0С/Вт

20. Приведенный трансмиссионный коэффициент теплопередачи здания:

Kmtr=1.13(2483,24/1,91+1387,3/0,367+74,24/0,81+67,5/0,688+

+0,6×1395,14/1,63+0,6×1395,14/2)/7802,56 = 1,29 (Вт/(м2.0С)).

21. (Без изменения). Воздухопроницаемость стен, покрытия, перекрытия первого этажа Gmw=Gmc=Gmf=0.5кг/(м2.ч), окон в деревянных переплетах и балконных дверей GmF=6кг/(м2.ч). (Таблица 12 СНиП II-3-79*).

22. (Без изменения). Требуемая краткость воздухообмена жилого дома na, 1/ч, согласно СНиП 2.08.01, устанавливается из расчета 3м3/ч удаляемого воздуха на 1м2 жилых помещений, определяется по формуле:

na=0,35 (1/ч).

23. (Без изменения). Приведенный инфильтрационный (условный) коэффициент теплопередачи здания:

Kminf=0,6 (Вт/(м2.0С)).

24. Общий коэффициент теплопередачи, Вт/(м2.0С), определяемый по формуле:

Km=Kmtr+Kminf=1,29+0,6=1,89 (Вт/(м2.0С)).


Теплоэнергетические показатели

25. Общие теплопотери через ограждающую оболочку здания за отопительный период Qh, МДж:

Qh=0.0864. 1,89.2682.7802,56=3422324,26 (МДж).

26. (Без изменения). Удельные бытовые тепловыделения qint=10Вт/м2.

27. (Без изменения). Бытовые теплопоступления в здание за отопительный период, МДж:

Qint=10445,34 (МДж).

28. (Без изменения). Теплопоступления в здание от солнечной радиации за отопительный период:

Qs=929300,87 (МДж).

29. Потребность в тепловой энергии на отопление здания за отопительный

период, МДж:

Qhy=(Qh– (Qint+Qs).У).bh ,

Qhy=(3422324,26 –(10445,34 +929300,87).0.8).1.11= 2964285,29 (МДж).

30. Удельный расход тепловой энергии на отопление здания qhdes, кДж/(м2.0С.сут):

qhdes=103.Qhy/Ah.Dd ,

qhdes=2964285,29 ×103/(6674,4×2682)=66,28 (кДж/(м2.0С.сут)).


При требуемом qhreq=70кДж/(м2.0С.сут).

По принятым сопротивлениям теплопередаче определимся конструкциями ограждений и толщиной утеплителя стен, совмещенного покрытия и перекрытия 1-го этажа.

Стены: принимаем следующую конструкцию стены, теплотехнические характеристики материалов и толщину утеплителя:

1%20вариант%20в%20ПЗ

Рисунок 4.1. Конструкция наружной стены

1) Цементно-песчаный раствор

λ = 0,76 Вт/мС; ρ = 1600 кг/м3

2) Кирпичная кладка из кирпича

глиняного обыкновенного на

цементно-песчаном растворе

λ = 0,70 Вт/мС; ρ=1800 кг/м3

3) Эффективный утеплитель «Rockwool»

λ = 0,06 Вт/мС; ρ=125 кг/м3


4) Пенобетонный блок

λ = 0,41 Вт/мС; ρ = 1000 кг/м3

R0 = Rв + Rштук + Rкирп + Rутепл + Rблок + Rштук + Rн R

отсюда δут = 0,05 м.

Совмещенное покрытие. Теплотехнические показатели материалов компоновки покрытия:

1. Цементно-песчаная стяжка:

плотность g=1800кг/м3,

коэффициент теплопроводности

lА=0,76Вт/(м.0С).

2. Утеплитель - жесткие

минераловатные плиты:

плотность g=200кг/м3,

коэффициент теплопроводности

lА=0,076Вт/(м.0С)

3. Железобетонная монолитная плита: Рисунок 4.2. Компоновка покрытия

плотность g=2500кг/м3, коэффициент

теплопроводности lА=1,92Вт/(м.0С).

Сопротивление теплопередаче:

R0=Rв+Rж/б+Rутеп+Rст+Rн=R0треб;

1/8,7+0,2/1,92+dутеп/0,076+0,04/0,76+1/23=1,63,

откуда dутеп=0,1м = 100 мм.

Перекрытие первого этажа. Теплотехнические характеристики материалов:

1. Дубовый паркет:

плотность g=700кг/м3, Рисунок 4.3. Компоновка перекрытия

коэффициент теплопроводности первого этажа

lА=0,35Вт/(м.0С).

2. Цементно-песчаная стяжка:

плотность g=1800кг/м3,

коэффициент теплопроводности

lА=0.76Вт/(м.0С).

3. Утеплитель – пенополистирол:

плотность g=40кг/м3,

коэффициент теплопроводности lА=0,041Вт/(м.0С).

4. Железобетонная плита:

плотность g=2500кг/м3, коэффициент теплопроводности lА=1,92 Вт/(м.0С).

Сопротивление теплопередаче:

R0=Rв+Rпар.+Rст+Rутеп+Rж/б+Rн=R0треб;

1/8,7+0,04/0,76+0,015/0,35+dутеп/0,041+0,2/1,92+1/23=2,

откуда dутеп=0,067 м = 70 мм.

4.4 Расчет индекса изоляции воздушного шума междуэтажного перекрытия

Перекрытие состоит из монолитной несущей плиты γ = 2500 кг/м3 толщиной 200 мм, звукоизоляционной прокладки из ДВП с γ = 600 кг/м3 толщиной 25 мм, в не обжатом состоянии, цементно-песчаной стяжки γ = 1800 кг/м3 толщиной 40 мм, паркета толщиной 15 мм, γ = 700 кг/м3.

Определяем поверхностные плотности элементов перекрытия:

m1 = 2500 ∙ 0,2 = 500 кг/м2;

m2 = 1800 ∙ 0,04+700 ∙ 0,015= 82,5 кг/м2.


Находим частоту

собственных колебаний по

формуле:

где Ед = 90 ∙ 104 кгс/м2,

hз = h0 ∙ (1 – εд) – толщина Рисунок 4.4. Конструкция междуэтажного

звукоизоляционного слоя в перекрытия

сжатом состоянии, м;

h0 – толщина звукоизоляционного

слоя в не обжатом состоянии, м;

εд – относительное сжатие материала

звукоизоляционного слоя под нагрузкой.

hз = 0,025 ∙ (1 – 0,1) = 0,0225 м.


Индекс изоляции воздушного шума плитой толщиной 200 мм, выполненной из тяжёлого бетона кл. В22,5 объёмной плотностью 2500 кг/м3.

Индекс изоляции при mэ ≥ 200 кг/м3 составит:

Rw0 = 32 ∙ Lg mэ – 8 дБ = 32 ∙ Lg 500 – 8 дБ = 54,1 дБ,

где mэ = K ∙ m – эквивалентная поверхностная плотность в кг/м3;

К = 1 для ограждающей конструкции более 1800 кг/м3;

m = 2500 ∙ 0,2 = 500 кг/м3 – поверхностная плотность.

По табл. 10 находим индекс изоляции воздушного шума для данного междуэтажного перекрытия Rw = 55 дБ.

По СНиП II-12-77 Iв для нашего варианта Iв=50 дБ.

дБ,

следовательно наше перекрытие удовлетворяет нормам R'w =52 дБ < Rw =55 дБ.

Данная конструкция междуэтажное перекрытие удовлетворяет нормам по изоляции от воздушного шума.

Требуется рассчитать индекс приведённого уровня ударного шума под междуэтажным перекрытием.

По табл. 14 находим Lпw0 = 72 дБ – индекс приведённого ударного шума для сплошной плиты перекрытия (поверхностная плотность 500 кг/м3).

Находим частоту собственных колебаний

где Ед = 10 ∙ 104 кгс/м2,

hз = 0,0225 м.

Находим индекс приведённого уровня ударного шума под междуэтажным перекрытием Lпw = 55 дБ.

По СНиП II-12-77 Iу = 67 дБ, I'nw = Iу –7дБ=67-7=60 дБ.

Условие L'nw> Lnw выполнено L'nw=60 дБ >Lnw=55 дБ.

Вывод: принятая конструкция междуэтажное перекрытие удовлетворяет нормам по изоляции от ударного шума, следовательно может быть применено в дальнейшей разработке.

4.5 Противопожарные мероприятия

Проект жилого здания разработан с учетом требований СНиП 21-01-97* «Пожарная безопасность зданий и сооружений».

Эвакуация из здания предусмотрена по лестничным клеткам по балконам через улицу. В площадь лестничной клетки входят два лифта – грузовой и пассажирский. Двери лестничных клеток предусмотрены с самозакрыванием и уплотнением притворов.

На кровле на перепадах предусмотрены вертикальные стремянки.

Входы в техподполье запроектированы изолировано. Техподполье поделено на два отсека, в каждом по два окна.

4.6 Инженерное оборудование и внутренние сети

Отопление

Теплоноситель в системе отопления - вода с параметрами 85-60°С. Снижение температуры сетевой воды осуществляется смесительным насосом, т.к. располагаемый напор недостаточный для работы элеватора.

На вводе теплосети в техподполье предусмотрен тепловой узел. В тепловом узле установлен узел учета и контроля тепловой энергии и распределительная гребенка. В узел учета входят измерительные и регулирующие приборы, приборы учета и смесительный насос (сдвоенный насос фирмы Grundfoss). В качестве прибора учета принят теплосчетчик ТСК-4М, включающий в себя: вычислитель ВТК-4М; преобразователь расхода электронный ПРЭМ-2 dy50 – 4 шт.; термометры сопротивления - 4 шт.

Теплосчетчик предназначен для измерения суммарного количества тепловой энергии и суммарного объема теплоносителя. Электропитание тепловычислителя осуществляется от автономного источника - литиевой батареи напряжением 36 В.

Система отопления двухтрубная горизонтальная с попутным движением теплоносителя. Спуск воды осуществляется в нижних точках через тройники. Удаление воздуха - с помощью кранов Маевского, установленных на отопительных приборах.

В качестве отопительных приборов запроектированы алюминиевые секционные радиаторы «OPERA» с высотой колонки 500 м. Регулирование температуры внутри помещений осуществляется с помощью регулирующих клапанов на подводках к радиаторам.

Для балансировки веток на подводках к приборам установлены балансировочные клапаны. Для возможности гидравлической увязки потерь давления на обратных линиях установлены балансировочные клапаны. Для отопления галереи, проект которой будет выполнен позже, предусмотрена ветка с запорным вентилем на подаче и балансировочным клапаном на обратной линии.

Трубопроводы, проходящие в техподполье, и все трубопроводы теплоснабжения калориферов изолированы матами минеральными фирмы «URSA». Покровный слой - рулонный стеклопластик марки РСТ-415. Антикоррозийное покрытие - масляно-битумное в два слоя по грунту ГФ-021.

Вентиляция и кондиционирование воздуха

Для создания нормальных санитарно-гигиенических параметров воздуха в помещениях предусматривается общеобменная вентиляция, рассчитанная на разбавление вредностей до допустимых нормами концентраций.

Вентиляция принята приточно-вытяжная с естественным и механическим побуждением, в зависимости от назначения обслуживаемых помещений и объемов подаваемого и удаляемого воздуха. Приток воздуха организован от центральных кондиционеров фирмы «NEC», установленных в венткамерах в подземном гараже и на 11-м этаже.

Источник холодоснабжения – чиллер расположен на кровле здания. Холодоноситель - вода с параметрами 7-12°С, поступает к центральному насосу, расположенно

Подобные работы:

Актуально: