О возможностях физической нереализуемости космологической и гравитационной сингулярностей в общей теории относительности
Павло ДАНЫЛЬЧЕНКО
Обоснована возможность нереализуемости космологической сингулярности Большого Взрыва Вселенной непосредственно в ортодоксальной ОТО. Показано отсутствие ограничения массы астрономического тела, самосжимающегося в СО Вейля, если тело является полым и имеет зеркальную симметрию собственного пространства. Обоснованы неизбежность самоорганизации в эволюционирующем физическом вакууме спиральноволновых образований, соответствующих элементарным частицам, и единая электромагнитная природа элементарных частиц.
About possibilities of physical unrealizability of cosmological and gravitational singularities in General relativity
Существование сингулярностей в ОТО рассматривалось Эйнштейном (1) и позже наиболее авторитетными специалистами в этой области физики (Иваненко (2); Мёллер (3, 4); Хокинг (5)) не только как наиболее очевидная трудность этой теории, но и как признак ограниченности ее области применения. Исходя из этого и из очевидности математической неизбежности существования сингулярностей в ОТО (6, 7), предпринимается множество попыток радикального усовершенствования ОТО для больших плотностей вещества. Здесь же избран иной путь решения этой проблемы.
Процесс расширения Вселенной как целого может иметь место только тогда, когда он реализуется и в каждой отдельной точке бесконечного пространства Вселенной. И его наличие может быть обусловлено лишь эволюционной изменчивостью свойств физического вакуума а, следовательно, и «адаптацией» элементарных частиц вещества к постоянно обновляемым условиям их взаимодействия. Поэтому, очевидно, расстояния между квазинеподвижными в СО Вейля галактиками (согласно с гипотезой Вейля (8...10), в этой не сопутствующей веществу СО они совершают только малые пекулярные движения) удлиняются в СО, сопутствующей эволюционно самосжимающемуся веществу, не из-за расширения космического пространства в «никуда», а из-за монотонного сокращения эталона длины в СО Вейля. Последнее вызвано калибровочной (то есть принципиально ненаблюдаемой в СО вещества, ввиду инвариантности мира людей к масштабным преобразованиям в микромире (11)) изменчивостью абсолютных значений пространственных параметров элементарных частиц, эволюционно самосжимающихся в абсолютном пространстве Ньютона – Вейля. Это и является причиной непрерывного уменьшения всех объектов Вселенной в СО Вейля.
Обусловливание процесса, который имеет место в мегамире, процессами, которые имеют место в микромире, хорошо согласуется с существованием многих соответствий в соотношениях между атомными, гравитационными и космологическими характеристиками – «большими числами» Эддингтона – Дирака (2, 12, 13) и не противоречит современным физическим представлениям. Поэтому, расширение Вселенной, аналогично ежедневному движению Солнца по небосводу, можно рассматривать как явление, наблюдаемое лишь в некоторой избранной СО. Уже древние греки – Аристарх из Самоса (ок. 310 – ок. 230 до н.э.) и Селевк из Селевкии (ок. 190 – неизв. до н.э.) предполагали, что на самом деле Земля вращается вокруг своей оси и вокруг Солнца. Однако, понадобилось около двух тысяч лет, чтобы это стало для всех очевидной истиной. Можно только надеяться, что явление расширения Вселенной не будет иметь такую же судьбу.
Обоснование допустимости в ОТО эволюционного процесса калибровочного самосжимания вещества
Ввиду относительности движения, на первый взгляд, не видно никакого различия между расширением пространства относительно вещества и самосжатием вещества в пространстве. На самом же деле, это различие не только имеется, но и является очень существенным. Мировые точки, в которых точки пустого собственного пространства самосжимающегося тела движутся в абсолютном пространстве Ньютона – Вейля со сверхсветовой скоростью, находятся за пределами пространственно-временного континуума (ПВК) этого тела. При этом пустое собственное пространство самоограничивается горизонтом видимости. И более того, неодинаковость релятивистских сокращений размеров и релятивистских замедлений времени в разных точках собственного пространства, которая обусловлена неравенством скоростей этих точек, приводит к возникновению соответственно кривизны и физической неоднородности собственного пространства самосжимающегося тела.
Пространства, в которых происходит самосжатие вещества или расширение космического пространства, не имеют всего этого и, наоборот, могут быть безграничными и бесконечно большими. Поэтому, при расширении космического пространства относительно вещества горизонтом видимости будет ограничено пространство СО Вейля. При самосжимании же вещества в космическом пространстве (как здесь предполагается), наоборот, горизонтом видимости будет ограничено пространство СО, сопутствующей этому веществу. При этом в условно пустом пространстве самосжимающегося тела, а именно, в его дальних зонах, точки которых движутся в СО Вейля со сверхсветовыми скоростями, нет физических тел, увлекаемых этим пространством. Напротив, все астрономические объекты, условно неподвижные в СО Вейля, увлекаются расширяющимся космическим пространством. И на сколь угодно больших расстояниях от наблюдателя они могут двигаться, согласно зависимости Хаббла, со сколь угодно большими скоростями. Однако, скорость физического объекта не может превысить скорость света в точке, где он находится. Поэтому, на сколь угодно больших расстояниях от наблюдателя несобственные значения скорости света также должны быть сколь угодно большими. Это, однако, не следует из уравнений гравитационного поля ОТО. В противном случае собственное пространство наблюдателя должно быть конечным. А это возможно, как в случае фридмановой сингулярной модели расширяющейся Вселенной с ее конечным прошлым, так и в случае наличия горизонта видимости в собственном пространстве вещества. При безначальном существовании Вселенной (не допускающем наличия космологической сингулярности) нет других известных физических механизмов, которые смогли бы сформировать горизонт видимости собственного пространства любого астрономического тела, кроме релятивистского сокращения размеров и релятивистского замедления времени. Поэтому, явление расширения вечной Вселенной может быть обусловлено лишь калибровочным процессом эволюционного самосжатия вещества в космическом пространстве.
Такое калибровочное (для собственного наблюдателя) самосжатие вещества, которое проявляется в релятивистском сокращении размеров движущегося тела, было признано физически реальным впервые в специальной теории относительности. В ОТО оно вызвано влиянием гравитационного поля на вещество и может быть довольно значительным при релятивистском гравитационном коллапсе. Однако, если при перемещении вещества вдоль силовых линий гравитационного поля происходит калибровочное самодеформирование его в абсолютном пространстве, то тогда почему оно не может быть возможным и при «перемещении» тела лишь во времени? Ведь, благодаря объединению пространства и времени в единый ПВК (четырехмерное пространство-время Минковского) координатное время в ОТО равноценно пространственным координатам. Поэтому, гравитационное поле может рассматриваться как проявление запаздывания во времени процесса калибровочного самосжатия вещества в точках более отдаленных от центра астрономического тела и наличия влияния вещества на свойства физического вакуума через отрицательную обратную связь. Эта обратная связь реализуется посредством изменений собственных значений, как объемов молекул, так и плотностей энергии и энтальпии вещества. На ранних стадиях эволюции Вселенной, когда все ее пространство было заполнено веществом, собственное значение объема молекул постепенно увеличивалось, а собственные значения плотностей энергии и энтальпии вещества постепенно уменьшались. То же самое имеет место и в случае продвижения от центра астрономического тела к его внешней поверхности, то есть в случае продвижения в пространстве, а не во времени.
Внутреннее решение Шварцшильда для идеальной жидкости в сопутствующей СО
Рассмотрим внутреннее решение Шварцшильда для идеальной жидкости, которая калибровочно самосжимается в СО Вейля и, поэтому, имеет жесткую сопутствующую ей СО. В этой собственной СО жидкости, неоднородно сжатой гравитацией, линейный элемент имеет статическую и сферически симметричную форму (10) и поэтому задается приращениями угловых координат, приращением фотометрического радиуса r сферической поверхности (значение которого определяется через ее площадь и в непустом пространстве с кривизной в принципе может изменяться немонотонно вдоль метрического радиального отрезка rметр) и приращением координатного (астрономического) времени t. Функции a(r) и b(r), нормирующие квадраты этих приращений, характеризуют соответственно кривизну и физическую неоднородность собственного пространства жидкости и связаны с собственной плотностью массы μ(r) и собственным давлением p(r) дифференциальными уравнениями (10). Из этих-то уравнений и могут быть найдены функции a(r) и b(r), а также радиальное распределение гравитационного радиуса rg(r) внутренней части жидкости, отделенной от ее верхней внешней части сферической поверхностью с фотометрическим радиусом r. На граничной (крайней) поверхности жидкости с фотометрическим радиусом re: a(re)b(re) = 1.
Зная функцию b(r) можно найти радиальное распределение несобственного (координатного) значения скорости света vc(r) = c(b)1/2, которое определяется в астрономическом (координатном) времени t СО всего жидкого тела и является неодинаковым в разных точках этого тела (зависит от радиальной координаты точки распространения света). Здесь c – собственное значение скорости света, которое определяется в собственном квантовом времени точки распространения света, и, поэтому, является одинаковым во всех точках собственных пространств вещества (константа скорости света). Космологическая постоянная уравнений гравитационного поля λ = 3(1 – rge/rc)/rc2 задает (вместе с гравитационным радиусом всей жидкости rge ≡ rg(re)) максимальное значение фотометрического радиуса в СО жидкости (радиуса rc горизонта видимости условно пустого пространства над жидкостью) и, тем самым, указывает на наличие адиабатного равновесного процесса калибровочного самосжатия молекул жидкости в космическом пространстве.
Физическая сущность горизонта видимости и сферы Шварцшильда. Космологический возраст Вселенной
Леметром (10, 14) и, независимо, Робертсоном (10, 15) было найдено специальное преобразование координат. С помощью этого преобразования можно перейти от сопутствующей веществу жесткой СО к несопутствующей СО, в которой размеры как макро- так и микрообъектов вещества тела взаимно пропорционально изменяются во времени. В случае пренебрежительно малых значений гравитационного радиуса (rge≈0) этого тела, расположенного вдали от других астрономических тел, будем иметь: rc≈(3/λ)1/2=c/He. Выраженный через rc линейный элемент самосжимающегося тела будет иметь сферически симметричную форму не только в СО вещества но и в СО Вейля (10).
Эта форма лишь формально соответствует вселенной де Ситтера. Радиальная координата произвольной мировой точки в СО Вейля равна: R=Rk·exp(He(Tk–T))=r·(1-He(T–Tk)), где Rk=r – радиальная координата в СО Вейля этой точки ПВК эволюционно самосжимающегося тела в момент времени Tk (Tk) калибровки размера эталона длины в СО Вейля по его размеру в собственной СО этого тела. Время T=t+(rc/2c)·ln(1–r2/rc2) отсчитывается в СО Вейля по метрически однородной шкале, по которой скорость квазиравновесных физических процессов в веществе не изменяется, несмотря на постепенное уменьшение расстояний между его взаимодействующими элементарными частицами. Поэтому, то оно и рассматривается нами далее как космологическое время. Время T=Tk+(1/He)(1–exp{He(Tk–T)}) отсчитывается в СО Вейля по физически однородной шкале (16, 17), которая метрически не откалибрована, но зато гарантирует неизменность абсолютных значений скорости света Vc и энергии фотонов в процессе распространения света. Поэтому, эта шкала (как и шкала длины в СО Вейля) требует непрерывной перенормировки. Благодаря перенормировке этой шкалы времени момент мнимой сингулярности (момент самосжатия вещества до нулевых размеров) будет «ожидаться» по ней всегда через один и тот же конечный промежуток времени T–Tk=He–1, независимо от длительности прошедшего времени.
Поэтому, на самом деле, этот момент времени принципиально недостижим. А это означает физическую нереализуемость такой сингулярности. Постоянная Хаббла He=–VH/R определяет в СО Вейля по метрически однородной шкале времени пропорциональность между скоростью движения точек самосжимающегося тела VH и радиальным расстоянием R до этих точек в евклидовом пространстве СО Вейля. Значение He эволюционно не изменяется и, следовательно, не зависит от усредненной плотности материи в расширяющейся Вселенной. Поэтому точное определение значения этой усредненной плотности, как и связанная с ней проблема наличия во Вселенной скрытой массы или же так называемой темной небарионной материи являются неактуальными. Значение соотношения –VH/R, определяемого в СО Вейля по физически однородной шкале времени, наоборот, эволюционно изменяется и становится неизменной величиной лишь когда непрерывно перенормируется. Аналогично в СО Вейля по метрически однородной шкале времени неизменным является лишь непрерывно перенормируемое (в соответствии с эволюционным уменьшением вещественного эталона длины) значение скорости света.
В соответствии с этим скорости радиального движения не только макрочастиц самосжимающегося вещества тела, но также и всех точек условно пустого собственного пространства калибровочно самосжимающегося тела определяются в СО Вейля по метрически однородной шкале времени зависимостью Хаббла:
V = dR/dT = –HeRkexp(–He(T – Tk)) = –HeR.
И они абсолютно не зависят, как было показано в (16), от параметров уравнений гравитационного поля ОТО. С учетом релятивистского замедления времени несобственные значения скоростей света в СО эволюционно самосжимающегося тела (vc) и в СО Вейля (Vc) связаны между собой конформной релятивистской зависимостью (17). Фронт собственного времени t физического тела соответствует одновременным (когда собственное время неоднородно – совпадающим (17, 18)) событиям и распространяется в собственной СО тела принципиально мгновенно. Как следует из преобразований Лоренца для скоростей, в СО Вейля этот фронт распространяется, хотя и с большей чем несобственное значение скорости света, однако, все же конечной скоростью. Зная эту скорость, можно найти формулу для разницы между космологическими возрастами событий, одновременных в СО эволюционно самосжимающегося тела, в произвольных точках j и i условно пустого собственного пространства этого тела. Согласно этой формуле, при любых значениях rge и, следовательно, при любых значениях массы тела события в точках горизонта видимости собственного пространства этого тела имели место в космологическом времени в бесконечно далеком прошлом. И, следовательно, горизонт видимости любого эволюционно самосжимающегося тела, как и показано в (16, 17), охватывает все бесконечное абсолютное пространство.
Чрезвычайно высокая концентрация астрономических объектов возле горизонта видимости, обусловленная этим, и конечность собственного пространства физического тела, однако, не обнаруживаются в процессе астрономических наблюдений. Это связано с определением расстояний до далеких звезд по их светимости, исходя из предположения об изотропности их яркости (что справедливо, конечно, для евклидова абсолютного пространства, а не для собственного пространства вещества, которое имеет кривизну), и непосредственно по их концентрации в определенном телесном угле. И, следовательно, фактически определяются не метрические радиальные расстояния rметр до далеких объектов в конечном неевклидовом метрическом собственном пространстве тела, с поверхности которого ведется наблюдение, а непрерывно перенормируемые радиальные расстояния rk=Rk до этих объектов в бесконечном евклидовом абсолютном пространстве.
Одновременность в СО вещества бесконечно далекого прошлого на горизонте видимости (когда расстояния между взаимодействующими элементарными частицами протовещества в абсолютном пространстве были сколь угодно большими) с каждым конкретным событием в любой точке собственного пространства вещества вызывает конечность метрического расстояния в собственном пространстве до его горизонта видимости (16, 17) (возможность этого была показана Пенроузом (20)). Охват же горизонтом видимости всего бесконечного абсолютного пространства как раз и объясняет недостижимость излучением этого горизонта и неприход излучения от горизонта к наблюдателю за сколь угодно большой, но конечный, интервал времени. Поэтому вблизи горизонта видимости любого тела непрерывно «наблюдается» замедленный (по часам тела) процесс зарождения вещества, что лишь формально соответствует Голда – Бонди – Хойла теории (2, 21). Если горизонт видимости собственного пространства вещества фактически является псевдогоризонтом прошлого, то сфера Шварцшильда с фотометрическим радиусом rs является псевдогоризонтом будущего вещества (16). События, которые происходят на этой сфере, являются одновременными в СО физического тела с каждым событием на поверхности и в любых других точках этого тела. Поэтому, они могут иметь место в космологическом времени лишь в бесконечно далеком будущем. Внутри же «фиктивной» сферы Шварцшильда нет ничего на тот «момент» космологического времени а, следовательно, и в любой момент собственного времени физического тела. Это, обусловлено принципиальным сохранением конечных собственных значений размеров вещества, когда его размеры сколь угодно большие или сколь угодно малые (гипотетически – условно «нулевые» в бесконечно далеком будущем) в абсолютном пространстве, а, следовательно, – и принципиальной недостижимостью фотометрическим радиусом (аналогично абсолютной температуре) не только бесконечно большого, но и нулевого значения.
Здесь прослеживается наличие отрицательной обратной связи между собственным значением размера (стабилизируемый выходной параметр) и единицей длины, определяемой в абсолютном пространстве по вещественному эталону длины. Эта обратная связь препятствует катастрофическому уменьшению не только собственных размеров остывающих астрономических тел, но и скоростей протекания физических процессов в их веществе (что возможно из-за уменьшения абсолютного значения скорости света) и, тем самым, гарантирует устойчивое существование вещества. К тому же она ответственна и за самоорганизацию и устойчивое существование спиральноволновых структурных элементов (элементарных частиц вещества) в физическом вакууме, который калибровочно эволюционирует (стареет) и в СО Вейля является псевдодиссипативной средой. Аналогичные явления имеют место в термодинамике (принцип Ле Шателье – Брауна), в электромагнитных явлениях (правило Ленца) и в процессе движения (релятивистское сокращение длины (18)). Характер любого физического закона или явления определяется наличием явных и неявных (принципиально скрытых от наблюдения) отрицательных обратных связей, образовавшихся между параметрами и характеристиками вещества в процессе его самоорганизации и направленных на поддерживание устойчивости установившегося фазового состояния вещества. Выявление глобальной топологии прямых и обратных связей между параметрами и характеристиками вещества является первостепенной задачей физики.
Констатирование стационарности Вселенной в СО Вейля (как и в Голда – Бонди – Хойла теории) обусловливает принципиальную невозможность конечности ее космологического возраста, как в прошлом, так и в будущем. Тем самым исключается возможность, как зарождения из «ничего», так и расширения в «никуда» Вселенной. Концепция Большого Взрыва Вселенной базируется на использовании в космологии вместо метрически однородной шкалы экспоненциальной шкалы космологического времени t′=t′k–(1/He)(1–exp{He(t–tk)}), которая нуждается во взаимно пропорциональной непрерывной перенормировке всех промежутков времени и является инверсной физически однородной шкале времени в СО Вейля. Если по последней в любой момент времени Tk сингулярность будет реализована в будущем через один и тот же интервал времени T–Tk=He–1, то по ней в любой момент времени t′k сингулярность удалена от настоящего в прошлое на такой же интервал времени t′–t′k=– He–1, инвариантный только благодаря его непрерывной перенормировке.
Ввиду этого, такая концепция заменяет бесконечно долгое эволюционное развитие Вселенной революционным событием, которое имело место «неизвестно где и в чем». Отказ от нее, однако, не отрицает возможности горячего состояния вещества на ранних этапах его эволюции и другие результаты в исследовании эволюции Вселенной, полученные космологией. Он требует лишь некоторого переосмысления этих результатов. К тому же, этот отказ приводит лишь к метрическим трансформациям ПВК, которые не влияют на последовательность причин и следствий в протекании эволюционных физических процессов.
Согласно физическим представлениям, изложенным здесь, экспоненциальное замедление всех физических процессов по используемой сейчас в космологии шкале времени предусматривается. Тем самым, экспоненциальное замедление самосжимания вещества в абсолютном пространстве Ньютона – Вейля предусматривается тоже. А это равнозначно экспоненциально быстрому расширению Вселенной в сопутствующей веществу СО. Поэтому, эти физические представления хорошо согласуются с инфляционной космологией (22), которая основывается на сценарии раздувающейся Вселенной.
Черные дыры и астрономические объекты, альтернативные им
Так как (b′)e>0, то при неотрицательных значениях функций a и b значение фотометрического радиуса не должно уменьшаться при продвижении от поверхности тела к его центру. Однако, монотонное убывание функции r(rметр) в приповерхностной зоне тоже невозможно. В случае возможности этого гравитационная сила была бы направлена изнутри идеальной жидкости к ее поверхности и не была бы уравновешена никакой другой силой по причине условно нулевого значения давления над этой поверхностью. И более того, по этой же причине физическая сингулярность не может возникнуть на поверхности жидкости, пока она не установится и во всем ее объеме. Поэтому, во внутреннем пространстве такого тела должна сформироваться сфероцилиндрическая метрика, которая гарантирует возможность распространения физической сингулярности во всем объеме тела.
Согласно зависимости для нижней границы значений разницы космологических возрастов одновременных событий в непустом пространстве любого физического тела, конечность промежутков космологического времени между одновременными событиями в сопутствующей телу СО тоже имеет место лишь при наличии сфероцилиндрической метрики внутреннего собственного пространства тела. Из всего этого следует отсутствие, как гравитации внутри такого «тела», так и радиального перепада давления в его «веществе». Ведь его элементарные частицы излучили всю свою энергию квазичастицами (ввиду равенства нулю их гамильтонианов), и поэтому, перешли из актуального состояния в виртуальное и фактически сами себя уничтожили для внешнего наблюдателя. Энергия такой «мертвой» черной дыры сконцентрирована лишь в электромагнитном излучении, которое распространяется в СО Вейля со скоростью Хаббла. И, следовательно, только «мертвая» черная дыра может соответствовать уравнениям гравитационного поля ОТО в случае неотрицательных значений функций a и b.
Рассмотрим также совместимость существования черных дыр с наличием СО Вейля. Горизонт видимости жесткого тела в его собственной СО является неподвижным. Однако, в СО Вейля он движется со скоростью света. Поэтому, вещество, которое обладает инерцией, не может находиться на этом горизонте в принципе. Между поверхностью тела и его внешним горизонтом видимости (который, как было показано ранее, является псевдогоризонтом прошлого) обязательно должен быть слой пустого пространства. Однако, любой как угодно «фотометрически» тонкий слой внешней условно пустой части собственного пространства физического тела заключает в себе всю Вселенную. То есть, не только на самом горизонте видимости сколь угодно массивного тела, но и за пределами этого горизонта в принципе не может быть любых других физических объектов. Сверхнизкая напряженность гравитационного поля, которая создается астрономическим телом со сколь угодно малой массой возле своего горизонта видимости, не препятствует самопроизвольному движению возле этого горизонта других астрономических объектов. И, следовательно, в случае «прохождения» горизонта видимости тела в абсолютном пространстве через эти астрономические объекты наблюдалось бы в собственном пространстве этого тела убегание последних от него со скоростью света. Поэтому, никакое физическое тело не может само по себе изолироваться от Вселенной сингулярной поверхностью, которая расположена в пустом пространстве или хотя бы контактирует с этим пространством.
Таким образом, согласно изложенным здесь физическим представлениям, такие гипотетические астрономические объекты как черные дыры не могут существовать в принципе. Невозможность же движения в абсолютном пространстве граничной поверхности калибровочно самосжимающегося астрономического тела со скоростью света накладывает существенное ограничение, как на значение фотометрического радиуса этой поверхности в собственном пространстве, так и на значение гравитационного радиуса тела. Так, например, у гипотетической несжимаемой идеальной жидкости, которая может сокращатся лишь при изменении скорости движения, а также в нежестких СО и в СО Вейля, во всем объеме одинаковы, как собственные значения плотности массы, так и несобственные (координатные) значения плотности энтальпии. Учитывая это можно показать, что несобственное значение скорости света на граничной поверхности такой жидкости является минимальным при максимальном значении радиуса этой поверхности, при котором в центре тяжести жидкости давление становится бесконечно большим а, следовательно, и возникает гравитационная сингулярность. Дальнейшее увеличение re а, следовательно, и увеличение массы жидкости при такой (обычной: a0=1) конфигурации ее ПВК принципиально невозможно из-за принятия отрицательных значений не только b0, но также и собственными значениями давления и плотности энтальпии. И более того, когда μ=6He2/κc4: re=rs=rc=λ–1/2=c3–1/2/He. Тем самым, собственное пространство жидкости (как внутри ее, так и снаружи) имеет сфероцилиндрическую метрику. А несобственное значение скорости света vc не только внутри жидкости, но также и в условно пустом пространстве над ней становится нулевым.
Как и во всех других решениях уравнений гравитационного поля ОТО, в этом решении интегрирование начинается с нулевого значения фотометрического радиуса тела. Поэтому, верхние слои вещества (даже когда они сколь угодно массивные) не оказывают прямого влияния на кривизну собственного пространства тела в нижних слоях вещества, в то время как нижние слои вещества непосредственно влияют на кривизну этого пространства в верхних слоях. Для гипотетической несжимаемой жидкости функция a, которая определяет кривизну ее внутреннего пространства, в точках нижних слоев жидкости совсем не зависит от наличия жидкости выше этих слоев. Ведь давление верхних слоев несжимаемой жидкости не оказывает влияния на распределение собственного значения ее плотности в нижних слоях. Это не только является парадоксальным, но и не всегда может быть физической реальностью. Верхние слои вещества, когда их масса очень большая, должны оказывать непосредственное влияние на кривизну пространства тела в нижних слоях через какую-либо интегральную характеристику. Это возможно, если в собственных пространствах чрезвычайно массивных астрономических тел физически реализуемые значения фотометрического радиуса ограничиваются не только сверху, но также и снизу. Это ограничение снизу значения фотометрического радиуса тела с сильным гравитационным полем может быть связано с существованием метрической сингулярности (1/a0=0) внутри тела. Оно имеет место при не монотонном радиальном изменении напряженности гравитационного поля в абсолютном и в сопутствующем телу пространствах.
При таком пространственном распределении напряженности гравитационного поля с уменьшением значения метрического радиального расстояния rметр фотометрический радиус r сначала уменьшается до своего минимального значения r0, а потом начинает возрастать внутри непустого собственного пространства этого тела. Физическая сингулярность (b0=0), которая всегда сопровождает метрическую сингулярность, имеет место при этом лишь в бесконечно малой окрестности поверхности с фотометрическим радиусом r0. Ввиду этого она фактически «размыта» квантовыми флуктуациями микронеоднородной структуры ПВК и, следовательно, физически не реализована. Такая «размытая» сингулярность не в состоянии исключить спорадическое взаимодействие между веществом внешней и внутренней части полого тела, благодаря возможности туннелирования формально абсолютно тонкого барьера, сформированного ею. Согласно квантово-механическим представлениям, движение вещества это – не механическое его перемещение, а постепенное изменение его пространственно-временных состояний. Поэтому то такая «размытая» сингулярная поверхность и не может быть абсолютно непреодолимым барьером также и для спорадического проникновения (квантового просачивания) вещества через нее.
Внутреннее решение уравнений ОТО для идеальной жидкости в СО Вейля
Ковариантность уравнений гравитационного поля ОТО относительно преобразований координат позволяет получить их внутреннее решение для идеальной жидкости и в СО Вейля. В этой СО ненулевые компоненты метрического тензора выражаются через параметры, имеющие следующий физический смысл. Собственное значение радиальной координаты r(R,T) определяется по собственному эталону длины в мировой точке с заданными абсолютными координатами и является тождественным фотометрическому радиусу в собственной СО жидкости. Соотношение N(R,T)=r/R определяет различие абсолютных размеров идентичных объектов вещества в разных точках евклидова мирового пространства (пространства СО Вейля) и, поэтому, характеризует метрическую (масштабную) неоднородность этого пространства для вещества. Среднестатистическое относительное значение частоты взаимодействий элементарных частиц вещества f(R,T)=NVc/c определяет различие темпов в СО Вейля протекания идентичных физических процессов в разных точках ее мирового пространства и, поэтому, характеризует физическую неоднородность мирового пространства для вещества.
Из уравнений гравитационного поля, заданных в координатах псевдоевклидова пространства Минковского СО Вейля, с учетом жесткости собственной СО идеальной жидкости, могут быть найдены зависимости координат мировых точек жидкости в СО Вейля от их координат в сопутствующей жидкости СО. Предельное минимальное значение фотометрического радиуса r0 соответствует в этих зависимостях сферической поверхности, в точках которой отсутствует напряженность гравитационного поля и выполняются следующие условия: f0=Her0/c, а: Vc0=HeR0. Значения tk и tk= tk b1/2 момента времени, в который в точке с радиусом rk (отдельно при Rk>R0 (Tk) и при Rk Отсутствие в СО Вейля, так называемой, «антигравитации» (27), имеющей место в собственной СО идеальной жидкости из-за ненулевого значения космологической постоянной, подтверждает полную устранимость «антигравитационного» поля преобразованием координат. Определимость значения постоянной Хаббла только значениями космологической постоянной и постоянной скорости света подтверждает обусловленность явления расширения Вселенной лишь эволюционным самосжатием вещества в абсолютном пространстве Ньютона – Вейля. Из-за наличия в этом внутреннем решении (также как и во внешнем решении (16)) принципиальной возможности двузначности функции R(r), функция rметр(r) также может быть двузначной. И, следовательно, уравнения гравитационного поля ОТО действительно допускают возможность существования метрической сингулярности (1/a0=0) внутри физического тела. Тем самым в любые моменты космологического и собственного времени вещества они гарантируют соответствие собственных значений фотометрического радиуса r, не меньших, чем r0, всему бесконечному евклидовому пространству СО Вейля. Поэтому, ни одна область пространства СО Вейля не может соответствовать решению Шварцшильда для r Необычная конфигурация ПВК, при которой достигается минимум суммарной энтальпии всей идеальной жидкости Такое сингулярное решение уравнений гравитационного поля ОТО соответствует сферически симметричному полому телу с зеркально симметричным собственным пространством и множеством центров тяжести в точках срединной сингулярной сферической поверхности, которая концентрична внешней и внутренней граничным поверхностям тела. При нулевом значении λ подобная конфигурация собственного пространства состоит из двух асимптотически евклидовых полупространств, соединенных узкой горловиной. Эта конфигурация получена Фуллером и Уилером (28, 29), исходя из геометродинамической модели массы. При ненулевом значении λ внутреннее пустое пространство массивного астрономического тела ограничено фиктивной сферой псевдогоризонта будущего. В этом внутреннем пустом пространстве, которое как бы «вывернуто на изнанку» чрезвычайно сильным гравитационным полем, вместо явления расширения Вселенной «наблюдается» явление сжатия «внутренней вселенной» и может сформироваться внутренняя планетная система. В собственных СО этих планет внутренняя граничная поверхность этого астрономического тела будет наблюдаться выпуклой, как и внешняя граничная поверхность. Ведь фотометрические радиусы орбит планет будут больше фотометрического радиуса этой поверхности. И лишь отсутствие далеких звездных систем во внутреннем пустом пространстве позволяет отличить его от внешнего пустого пространства. Значение фотометрического радиуса в центре тяжести определяется однозначно лишь при обычной конфигурации ПВК жидкости (r0=0 при a0=1). Его принципиально невозможно определить из уравнений ОТО, если конфигурация ПВК необычная (1/a0=0). Ввиду этого необходимо согласиться со следующим утверждением Хокинга (5): «ОТО, сама по себе (без использования дополнительных закономерностей, полученных в классической физике), не обеспечивает граничные условия в сингулярных точках для уравнений поля. И поэтому она становится «неполной» вблизи этих точек». Абсолютная устойчивость термодинамического равновесного состояния вещества, удерживаемого гравитационным полем и самосжимающегося в СО Вейля как одно целое, может гарантироваться в случае неизменности энтропии и внешнего давления лишь при выполнении следующего условия. Пространственное распределение функции r(rметр) должно соответствовать минимуму лагранжиана энтальпии всего вещества жидкого тела в СО Вейля. Значение этого лагранжиана равно энтальпии жидкости в сопутствующей ей СО и определяется зависимостью, учитывающей непосредственное влияние верхних и нижних слоев вещества на значения функций a(r,r0) и b(r,r0). Пространственные распределения несобственного (координатного) значения плотности энтальпии σ(r,r0) и собственного значения плотности массы μ(r,r0) находятся совместным решением уравнений гравитаци